OSAD: Open-Set Aircraft Detection in SAR Images
- URL: http://arxiv.org/abs/2411.01597v1
- Date: Sun, 03 Nov 2024 15:06:14 GMT
- Title: OSAD: Open-Set Aircraft Detection in SAR Images
- Authors: Xiayang Xiao, Zhuoxuan Li, Haipeng Wang,
- Abstract summary: Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments.
To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD)
It is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL)
- Score: 1.1060425537315088
- License:
- Abstract: Current mainstream SAR image object detection methods still lack robustness when dealing with unknown objects in open environments. Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments. The key challenges are how to improve the generalization to potential unknown objects and reduce the empirical classification risk of known categories under strong supervision. To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD), which is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL). GCM effectively enhances the network's representation of objects by attention maps which is formed through the capture of long sequential positional relationships. LPG leverages clues about object positions and shapes to optimize localization quality, avoiding overfitting to known category information and enhancing generalization to potential unknown objects. PCL employs prototype-based contrastive encoding loss to promote instance-level intra-class compactness and inter-class variance, aiming to minimize the overlap between known and unknown distributions and reduce the empirical classification risk of known categories. Extensive experiments have demonstrated that the proposed method can effectively detect unknown objects and exhibit competitive performance without compromising closed-set performance. The highest absolute gain which ranges from 0 to 18.36% can be achieved on the average precision of unknown objects.
Related papers
- Reciprocal Point Learning Network with Large Electromagnetic Kernel for SAR Open-Set Recognition [6.226365654670747]
Open Set Recognition (OSR) aims to categorize known classes while denoting unknown ones as "unknown"
To enhance open-set SAR classification, a method called scattering kernel with reciprocal learning network is proposed.
Proposal is made to design convolutional kernels based on large-sized attribute scattering center models.
arXiv Detail & Related papers (2024-11-07T13:26:20Z) - Unsupervised Recognition of Unknown Objects for Open-World Object
Detection [28.787586991713535]
Open-World Object Detection (OWOD) extends object detection problem to a realistic and dynamic scenario.
Current OWOD models, such as ORE and OW-DETR, focus on pseudo-labeling regions with high objectness scores as unknowns.
This paper proposes a novel approach that learns an unsupervised discriminative model to recognize true unknown objects.
arXiv Detail & Related papers (2023-08-31T08:17:29Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Open-World Object Detection via Discriminative Class Prototype Learning [4.055884768256164]
Open-world object detection (OWOD) is a challenging problem that combines object detection with incremental learning and open-set learning.
We propose a novel and efficient OWOD solution from a prototype perspective, which we call OCPL: Open-world object detection via discnative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via discriminative OCPL: Open-world object detection via
arXiv Detail & Related papers (2023-02-23T03:05:04Z) - CAT: LoCalization and IdentificAtion Cascade Detection Transformer for
Open-World Object Detection [17.766859354014663]
Open-world object detection requires a model trained from data on known objects to detect both known and unknown objects.
We propose a novel solution called CAT: LoCalization and IdentificAtion Cascade Detection Transformer.
We show that our model outperforms the state-of-the-art in terms of all metrics in the task of OWOD, incremental object detection (IOD) and open-set detection.
arXiv Detail & Related papers (2023-01-05T09:11:16Z) - Open World DETR: Transformer based Open World Object Detection [60.64535309016623]
We propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR.
We fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint.
Our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
arXiv Detail & Related papers (2022-12-06T13:39:30Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
We introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection.
OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring.
Our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from 1.8% to 3.3% in terms of unknown recall.
arXiv Detail & Related papers (2021-12-02T18:58:30Z) - Learning Open Set Network with Discriminative Reciprocal Points [70.28322390023546]
Open set recognition aims to simultaneously classify samples from predefined classes and identify the rest as 'unknown'
In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category.
Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction.
arXiv Detail & Related papers (2020-10-31T03:20:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.