論文の概要: Identifiable Cognitive Diagnosis with Encoder-decoder for Modelling
Students' Performance
- arxiv url: http://arxiv.org/abs/2309.00300v1
- Date: Fri, 1 Sep 2023 07:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 14:09:51.342239
- Title: Identifiable Cognitive Diagnosis with Encoder-decoder for Modelling
Students' Performance
- Title(参考訳): エンコーダデコーダを用いた識別可能な認知診断
- Authors: Jiatong Li, Qi Liu, Fei Wang, Jiayu Liu, Zhenya Huang, Enhong Chen
- Abstract要約: 既存の認知診断モデル(CDM)は、熟練度応答パラダイムに従う。
本稿では,新しい認知診断フレームワークを提案する。
我々は,ID-CDMの診断結果の識別性,説明性,正確性を示す。
- 参考スコア(独自算出の注目度): 77.24034306133987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive diagnosis aims to diagnose students' knowledge proficiencies based
on their response scores on exam questions, which is the basis of many domains
such as computerized adaptive testing. Existing cognitive diagnosis models
(CDMs) follow a proficiency-response paradigm, which views diagnostic results
as learnable embeddings that are the cause of students' responses and learns
the diagnostic results through optimization. However, such a paradigm can
easily lead to unidentifiable diagnostic results and the explainability
overfitting problem, which is harmful to the quantification of students'
learning performance. To address these problems, we propose a novel
identifiable cognitive diagnosis framework. Specifically, we first propose a
flexible diagnostic module which directly diagnose identifiable and explainable
examinee traits and question features from response logs. Next, we leverage a
general predictive module to reconstruct response logs from the diagnostic
results to ensure the preciseness of the latter. We furthermore propose an
implementation of the framework, i.e., ID-CDM, to demonstrate the availability
of the former. Finally, we demonstrate the identifiability, explainability and
preciseness of diagnostic results of ID-CDM through experiments on four public
real-world datasets.
- Abstract(参考訳): 認知診断は、コンピュータ適応テストなど多くの分野の基礎となる試験質問に対する回答スコアに基づいて、学生の知識能力の診断を目的としている。
既存の認知診断モデル(CDM)は、診断結果を学生の反応の原因である学習可能な埋め込みと見なし、最適化を通じて診断結果を学習する能力応答パラダイムに従う。
しかし,このようなパラダイムは,学生の学習性能の定量化に有害な,特定不能な診断結果や説明可能性の過剰化問題につながる可能性がある。
これらの問題に対処するため,我々は新しい識別可能な認知診断フレームワークを提案する。
具体的には,まず,応答ログから識別可能かつ説明可能な特徴や質問の特徴を直接診断するフレキシブルな診断モジュールを提案する。
次に、一般予測モジュールを用いて、診断結果から応答ログを再構成し、後者の正確性を保証する。
さらに,本フレームワークの実装,すなわちID-CDMを提案する。
最後に,4つの公開実世界のデータセットを用いて,ID-CDMの診断結果の識別可能性,説明可能性,正確性を示す。
関連論文リスト
- Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery [6.1521675665532545]
医用画像では、AIモデルの予測の背後にある根拠を明らかにすることが、信頼性を評価する上で重要である。
本稿では,意思決定推論と特徴識別機能を備えた説明可能なモデルを提案する。
提案手法を実装することにより,データ駆動モデルにより活用されるクラス固有の特徴を効果的に識別および可視化することができる。
論文 参考訳(メタデータ) (2024-05-23T19:00:38Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - ReliCD: A Reliable Cognitive Diagnosis Framework with Confidence
Awareness [26.60714613122676]
既存のアプローチは、生徒の熟達度を予測する際の過信の問題に悩まされることが多い。
本稿では,診断フィードバックの信頼性を定量的に評価できる,信頼性認知診断(ReliCD)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-29T07:30:58Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
医療のアドバイスをオンラインで求めている人にとっては、患者と対話して自動的に疾患を診断できるAIベースの対話エージェントが有効な選択肢だ。
これは、強化学習(RL)アプローチを自然解として提案した逐次的特徴(症状)選択と分類の問題として定式化することができる。
生成的アクターネットワークと診断批評家ネットワークから構成されるMMF-AC(Multi-Model-Fused Actor-Critic)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T03:06:16Z) - Learn-Explain-Reinforce: Counterfactual Reasoning and Its Guidance to
Reinforce an Alzheimer's Disease Diagnosis Model [1.6287500717172143]
本稿では、診断モデル学習、視覚的説明生成、訓練された診断モデル強化を統一する新しいフレームワークを提案する。
視覚的説明のために,対象ラベルとして識別される入力サンプルを変換する反ファクトマップを生成する。
論文 参考訳(メタデータ) (2021-08-21T07:29:13Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。