論文の概要: Advancing Personalized Federated Learning: Group Privacy, Fairness, and
Beyond
- arxiv url: http://arxiv.org/abs/2309.00416v1
- Date: Fri, 1 Sep 2023 12:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 13:29:30.977334
- Title: Advancing Personalized Federated Learning: Group Privacy, Fairness, and
Beyond
- Title(参考訳): 個人化フェデレーション学習の促進 - グループプライバシ、公正性、その他
- Authors: Filippo Galli, Kangsoo Jung, Sayan Biswas, Catuscia Palamidessi,
Tommaso Cucinotta
- Abstract要約: Federated Learning(FL)は、機械学習モデルを分散的かつ協調的にトレーニングするためのフレームワークである。
本稿では、FLフレームワーク内で訓練されたモデルによって達成されたパーソナライズ、プライバシ保証、公平性の3つの相互作用について述べる。
グループプライバシ保証を$d$-privacyを利用して導入する手法が提案されている。
- 参考スコア(独自算出の注目度): 6.731000738818571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a framework for training machine learning models
in a distributed and collaborative manner. During training, a set of
participating clients process their data stored locally, sharing only the model
updates obtained by minimizing a cost function over their local inputs. FL was
proposed as a stepping-stone towards privacy-preserving machine learning, but
it has been shown vulnerable to issues such as leakage of private information,
lack of personalization of the model, and the possibility of having a trained
model that is fairer to some groups than to others. In this paper, we address
the triadic interaction among personalization, privacy guarantees, and fairness
attained by models trained within the FL framework. Differential privacy and
its variants have been studied and applied as cutting-edge standards for
providing formal privacy guarantees. However, clients in FL often hold very
diverse datasets representing heterogeneous communities, making it important to
protect their sensitive information while still ensuring that the trained model
upholds the aspect of fairness for the users. To attain this objective, a
method is put forth that introduces group privacy assurances through the
utilization of $d$-privacy (aka metric privacy). $d$-privacy represents a
localized form of differential privacy that relies on a metric-oriented
obfuscation approach to maintain the original data's topological distribution.
This method, besides enabling personalized model training in a federated
approach and providing formal privacy guarantees, possesses significantly
better group fairness measured under a variety of standard metrics than a
global model trained within a classical FL template. Theoretical justifications
for the applicability are provided, as well as experimental validation on
real-world datasets to illustrate the working of the proposed method.
- Abstract(参考訳): Federated Learning(FL)は、機械学習モデルを分散的かつ協調的にトレーニングするためのフレームワークである。
トレーニング中、参加するクライアントのセットがデータをローカルに処理し、ローカル入力に対するコスト関数を最小化して得られたモデル更新のみを共有する。
flは、プライバシ保護機械学習への一歩として提案されたが、プライベート情報の漏洩、モデルのパーソナライゼーションの欠如、一部のグループにとってフェアなトレーニングモデルを持つ可能性などの問題に対して脆弱であることが示されている。
本稿では、flフレームワークでトレーニングされたモデルによって達成されたパーソナライゼーション、プライバシの保証、公平性の3つの相互作用について論じる。
差分プライバシーとその変種は、正式なプライバシー保証を提供するための最先端標準として研究され、適用されてきた。
しかしながら、flのクライアントは、異種コミュニティを表す非常に多様なデータセットを持っていることが多く、トレーニングされたモデルがユーザにとって公平な側面を維持することを保証しながら、機密情報を保護することが重要である。
この目的を達成するために、$d$-privacy(いわゆるメトリックプライバシ)を利用してグループプライバシの保証を導入する手法が提案される。
d$-privacy は、元のデータのトポロジカル分布を維持するためのメトリック指向の難読化アプローチに依存する微分プライバシーの局所化形式である。
この方法は、連合的なアプローチでパーソナライズされたモデルトレーニングを可能にし、正式なプライバシー保証を提供するだけでなく、古典的なflテンプレートでトレーニングされたグローバルモデルよりも、さまざまな標準メトリックで測定されたグループの公平性がはるかに優れている。
応用可能性に関する理論的正当化と,提案手法の動作を実証するための実世界のデータセットに対する実験的検証が提供される。
関連論文リスト
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated Learning(FL)は、参加者が個々のデータセットを共有することなく、協力し、共有モデルをトレーニングすることのできる、分散機械学習戦略である。
FLではプライバシと公平性が重要な考慮事項である。
本稿では、検証データなしで公正なグローバルモデルを作成し、グローバルなプライベートディファレンシャルモデルを作成するという課題に対処する枠組みを提案する。
論文 参考訳(メタデータ) (2023-05-23T09:58:48Z) - Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
言語モデルのプライベート・フェデレーション・ラーニング(FL)について検討する。
公開データは、大小両方の言語モデルのプライバシーとユーティリティのトレードオフを改善するために使われてきた。
提案手法は,プライベートなデータ分布に近い公開データをサンプリングするための理論的基盤を持つ新しい分布マッチングアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-20T07:55:58Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
フェデレーション学習は、ホワイトボックス攻撃に脆弱で、異種クライアントへの適応に苦慮している。
本稿では,選択的FD(Selective-FD)と呼ばれるFDのための選択的知識共有機構を提案する。
論文 参考訳(メタデータ) (2023-04-04T12:04:19Z) - Group privacy for personalized federated learning [4.30484058393522]
フェデレーション・ラーニング(Federated Learning)は、コラボレーティブ・機械学習の一種で、参加するクライアントがデータをローカルに処理し、コラボレーティブ・モデルの更新のみを共有する。
我々は、$d$-privacyのキープロパティを利用するグループプライバシ保証を提供する方法を提案する。
論文 参考訳(メタデータ) (2022-06-07T15:43:45Z) - Personalized PATE: Differential Privacy for Machine Learning with
Individual Privacy Guarantees [1.2691047660244335]
トレーニングデータ内に、パーソナライズされたプライバシ保証の異なるMLモデルのトレーニングを支援する3つの新しい方法を提案する。
実験により, 個人化されたプライバシ手法は, 非個人化されたベースラインよりも高い精度のモデルが得られることがわかった。
論文 参考訳(メタデータ) (2022-02-21T20:16:27Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
フェデレートラーニング(FL)のような協調機械学習技術は、データ転送なしで効果的に大規模なデータセット上でモデルのトレーニングを可能にする。
近年のイニシアチブでは、FLで訓練されたセグメンテーションモデルが、局所的に訓練されたモデルと同様のパフォーマンスを達成できることが示されている。
しかし、FLは完全なプライバシ保護技術ではなく、プライバシ中心の攻撃は秘密の患者データを開示することができる。
論文 参考訳(メタデータ) (2021-07-06T12:57:32Z) - MACE: A Flexible Framework for Membership Privacy Estimation in
Generative Models [14.290199072565162]
生成モデルにおけるメンバシッププライバシ推定のための最初の公式なフレームワークを提案する。
これまでの作業と比較すると、私たちのフレームワークはより現実的で柔軟な仮定をします。
論文 参考訳(メタデータ) (2020-09-11T23:15:05Z) - Federating Recommendations Using Differentially Private Prototypes [16.29544153550663]
生データを収集せずにグローバルおよびローカルなプライベートモデルを学習するための新しいフェデレーションアプローチを提案する。
通信を2ラウンドだけ必要とすることで、通信コストを削減し、過剰なプライバシー損失を回避することができます。
本稿では,グローバルモデルの局所的適応により,集中行列分解に基づくレコメンデータシステムモデルよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-03-01T22:21:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。