論文の概要: Application of Deep Learning Methods in Monitoring and Optimization of
Electric Power Systems
- arxiv url: http://arxiv.org/abs/2309.00498v1
- Date: Fri, 1 Sep 2023 14:42:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 13:09:51.915491
- Title: Application of Deep Learning Methods in Monitoring and Optimization of
Electric Power Systems
- Title(参考訳): 電力系統の監視・最適化における深層学習手法の適用
- Authors: Ognjen Kundacina
- Abstract要約: この論文の最初の大きな貢献は、電力系統状態推定を強化するためのグラフニューラルネットワークの適用である。
この論文の第2の鍵となる側面は、動的分散ネットワーク再構成のための強化学習の利用である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This PhD thesis thoroughly examines the utilization of deep learning
techniques as a means to advance the algorithms employed in the monitoring and
optimization of electric power systems. The first major contribution of this
thesis involves the application of graph neural networks to enhance power
system state estimation. The second key aspect of this thesis focuses on
utilizing reinforcement learning for dynamic distribution network
reconfiguration. The effectiveness of the proposed methods is affirmed through
extensive experimentation and simulations.
- Abstract(参考訳): 本論文は,電力系統の監視と最適化に使用されるアルゴリズムを進化させる手段として,ディープラーニング技術の利用を徹底的に検討する。
この論文の最初の大きな貢献は、グラフニューラルネットワークを電力系統の状態推定に応用することである。
この論文の第2の鍵となる側面は、動的分散ネットワーク再構成のための強化学習の利用である。
提案手法の有効性は,広範な実験とシミュレーションによって確認される。
関連論文リスト
- Enhancing Scalability in Recommender Systems through Lottery Ticket
Hypothesis and Knowledge Distillation-based Neural Network Pruning [1.3654846342364308]
本研究では、ニューラルネットワークの効率的なプルーニングを目的とした革新的なアプローチを導入し、エッジデバイスへの展開に特に焦点をあてる。
本手法は,LTH(Lottery Ticket hypothesis)とKD(Knowledge Distillation)フレームワークを統合することで,3つの異なるプルーニングモデルの定式化を実現する。
幸いなことに、我々のアプローチはGPU計算能力の最大66.67%を削減した。
論文 参考訳(メタデータ) (2024-01-19T04:17:50Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
本稿では,ニューラルネットワークの知識盲点を生かして,アルゴリズムの有効性を高めるための興味深い道を探る。
本手法は,半導体ダブル量子ドットシステムにおける任意の量子状態の生成に使用される機械学習アルゴリズムを中心にしている。
ニューラルネットワークが生成した予測を活用することにより、最適化プロセスの導出により、局所最適化を回避できる。
論文 参考訳(メタデータ) (2023-07-27T09:11:53Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless
Systems [0.6091702876917281]
本稿では,反復射影勾配(PGD)アルゴリズムをニューラルネットワークの層に深く展開し,ステップサイズパラメータを学習する,単純な低複素性TPCアルゴリズムを提案する。
高密度デバイス間通信(D2D)における性能評価の結果,提案手法は2回以上の繰り返し回数で反復アルゴリズムよりも優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-06-20T19:51:21Z) - Automating the Design and Development of Gradient Descent Trained Expert
System Networks [0.0]
従来の研究は、ニューラルネットワークの学習能力とエキスパートシステムの理解性と防御可能なロジックを概念的に組み合わせた、勾配降下訓練されたエキスパートシステムを導入していた。
本稿では,ニューラルネットワークと比較して,この重要な限界を克服する手法を提案する。
具体的には,より大規模で高密度なアプリケーションを必要とするルールファクトネットワークの利用を提案する。
論文 参考訳(メタデータ) (2022-07-04T18:55:10Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
本研究は,流体力学系の最適化と制御を支援するための深部強化学習(DRL)技術の能力を評価する。
原型ポリシー最適化(PPO)アルゴリズムの新たな"退化"バージョンを組み合わせることで、学習エピソード当たり1回だけシステムを最適化するニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-06-04T16:11:26Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z) - Subset Sampling For Progressive Neural Network Learning [106.12874293597754]
プログレッシブニューラルネットワーク学習は、ネットワークのトポロジを漸進的に構築し、トレーニングデータに基づいてパラメータを最適化するアルゴリズムのクラスである。
段階的なトレーニングステップ毎にトレーニングデータのサブセットを活用することで,このプロセスの高速化を提案する。
オブジェクト,シーン,顔の認識における実験結果から,提案手法が最適化手順を大幅に高速化することを示す。
論文 参考訳(メタデータ) (2020-02-17T18:57:33Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。