Randomized Polar Codes for Anytime Distributed Machine Learning
- URL: http://arxiv.org/abs/2309.00682v1
- Date: Fri, 1 Sep 2023 18:02:04 GMT
- Title: Randomized Polar Codes for Anytime Distributed Machine Learning
- Authors: Burak Bartan and Mert Pilanci
- Abstract summary: We present a novel distributed computing framework that is robust to slow compute nodes, and is capable of both approximate and exact computation of linear operations.
We propose a sequential decoding algorithm designed to handle real valued data while maintaining low computational complexity for recovery.
We demonstrate the potential applications of this framework in various contexts, such as large-scale matrix multiplication and black-box optimization.
- Score: 66.46612460837147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel distributed computing framework that is robust to slow
compute nodes, and is capable of both approximate and exact computation of
linear operations. The proposed mechanism integrates the concepts of randomized
sketching and polar codes in the context of coded computation. We propose a
sequential decoding algorithm designed to handle real valued data while
maintaining low computational complexity for recovery. Additionally, we provide
an anytime estimator that can generate provably accurate estimates even when
the set of available node outputs is not decodable. We demonstrate the
potential applications of this framework in various contexts, such as
large-scale matrix multiplication and black-box optimization. We present the
implementation of these methods on a serverless cloud computing system and
provide numerical results to demonstrate their scalability in practice,
including ImageNet scale computations.
Related papers
- Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Efficient Inference via Universal LSH Kernel [35.22983601434134]
We propose mathematically provable Representer Sketch, a concise set of count arrays that can approximate the inference procedure with simple hashing computations and aggregations.
Representer Sketch builds upon the popular Representer Theorem from kernel literature, hence the name.
We show that Representer Sketch achieves up to 114x reduction in storage requirement and 59x reduction in complexity without any drop in accuracy.
arXiv Detail & Related papers (2021-06-21T22:06:32Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Berrut Approximated Coded Computing: Straggler Resistance Beyond
Polynomial Computing [34.69732430310801]
We propose Berrut Approximated Coded Computing (BACC) as an alternative approach to deal with stragglers effect.
BACC is proven to be numerically stable with low computational complexity.
In particular, BACC is used to train a deep neural network on a cluster of servers.
arXiv Detail & Related papers (2020-09-17T14:23:38Z) - Coded Distributed Computing with Partial Recovery [56.08535873173518]
We introduce a novel coded matrix-vector multiplication scheme, called coded computation with partial recovery (CCPR)
CCPR reduces both the computation time and the decoding complexity by allowing a trade-off between the accuracy and the speed of computation.
We then extend this approach to distributed implementation of more general computation tasks by proposing a coded communication scheme with partial recovery.
arXiv Detail & Related papers (2020-07-04T21:34:49Z) - Relative gradient optimization of the Jacobian term in unsupervised deep
learning [9.385902422987677]
Learning expressive probabilistic models correctly describing the data is a ubiquitous problem in machine learning.
Deep density models have been widely used for this task, but their maximum likelihood based training requires estimating the log-determinant of the Jacobian.
We propose a new approach for exact training of such neural networks.
arXiv Detail & Related papers (2020-06-26T16:41:08Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Scalable Distributed Approximation of Internal Measures for Clustering
Evaluation [5.144809478361603]
Internal measure for clustering evaluation is the silhouette coefficient, whose computation requires a quadratic number of distance calculations.
We present the first scalable algorithm to compute such a rigorous approximation for the evaluation of clusterings based on any metric distances.
We also prove that the algorithm can be adapted to obtain rigorous approximations of other internal measures of clustering quality, such as cohesion and separation.
arXiv Detail & Related papers (2020-03-03T10:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.