論文の概要: Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights,
and Duties
- arxiv url: http://arxiv.org/abs/2309.00779v1
- Date: Sat, 2 Sep 2023 01:24:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 01:16:29.242037
- Title: Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights,
and Duties
- Title(参考訳): Value Kaleidoscope: 複数の人的価値、権利、デューティを備えたAIの実現
- Authors: Taylor Sorensen, Liwei Jiang, Jena Hwang, Sydney Levine, Valentina
Pyatkin, Peter West, Nouha Dziri, Ximing Lu, Kavel Rao, Chandra Bhagavatula,
Maarten Sap, John Tasioulas, Yejin Choi
- Abstract要約: 価値多元性とは、複数の正しい値が互いに緊張して保持されるという考え方である。
統計的学習者として、AIシステムはデフォルトで平均に適合する。
ValuePrismは、218kの値、権利、義務の大規模なデータセットで、31kの人間が記述した状況に関連付けられています。
- 参考スコア(独自算出の注目度): 70.20460442039375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human values are crucial to human decision-making. Value pluralism is the
view that multiple correct values may be held in tension with one another
(e.g., when considering lying to a friend to protect their feelings, how does
one balance honesty with friendship?). As statistical learners, AI systems fit
to averages by default, washing out these potentially irreducible value
conflicts. To improve AI systems to better reflect value pluralism, the
first-order challenge is to explore the extent to which AI systems can model
pluralistic human values, rights, and duties as well as their interaction.
We introduce ValuePrism, a large-scale dataset of 218k values, rights, and
duties connected to 31k human-written situations. ValuePrism's contextualized
values are generated by GPT-4 and deemed high-quality by human annotators 91%
of the time. We conduct a large-scale study with annotators across diverse
social and demographic backgrounds to try to understand whose values are
represented.
With ValuePrism, we build Kaleido, an open, light-weight, and structured
language-based multi-task model that generates, explains, and assesses the
relevance and valence (i.e., support or oppose) of human values, rights, and
duties within a specific context. Humans prefer the sets of values output by
our system over the teacher GPT-4, finding them more accurate and with broader
coverage. In addition, we demonstrate that Kaleido can help explain variability
in human decision-making by outputting contrasting values. Finally, we show
that Kaleido's representations transfer to other philosophical frameworks and
datasets, confirming the benefit of an explicit, modular, and interpretable
approach to value pluralism. We hope that our work will serve as a step to
making more explicit the implicit values behind human decision-making and to
steering AI systems to make decisions that are more in accordance with them.
- Abstract(参考訳): 人間の価値は人間の意思決定に不可欠である。
価値多元論は、複数の正しい値が互いに緊張して保持されるという見方である(例えば、友人に嘘をついて感情を守ることを考えると、友情と誠実さをどのようにバランスさせるのか)。
統計的学習者として、aiシステムはデフォルトで平均値に適合し、これらの既約価値の衝突を取り除きます。
AIシステムを改善するために、第一の課題は、AIシステムが多元的人間の価値、権利、義務、そしてそれらの相互作用をモデル化できる範囲を探索することである。
我々は,31kの人文的状況に関連する218kの値,権利,義務の大規模データセットであるvalueprismを紹介する。
ValuePrismの文脈化値はGPT-4によって生成され、人間のアノテータの91%が高品質と見なしている。
多様な社会的背景や人口統計学的背景にまたがる注釈者による大規模研究を行い,どの価値が表現されているかを理解しようとする。
ValuePrismでは、オープンで軽量で構造化された言語ベースのマルチタスクモデルであるKaleidoを構築します。
人間は教師gpt-4よりもシステムによって出力される値の集合を好み、より正確で広い範囲でそれを見つける。
さらに,コントラストを出力することで,人間の意思決定における多様性を説明する上で有効であることを示す。
最後に,kaleidoの表現を他の哲学的フレームワークやデータセットに移し,明示的,モジュール的,解釈可能なアプローチによる価値多元主義のメリットを確認した。
私たちの仕事が、人間の意思決定の背後にある暗黙的な価値をより明確にし、それに従って意思決定を行うためにaiシステムを統制するステップになることを期待しています。
関連論文リスト
- Democratizing Reward Design for Personal and Representative Value-Alignment [10.1630183955549]
本稿では,対話型対話アライメント(Interactive-Reflective Dialogue Alignment)について紹介する。
本システムは,言語モデルに基づく嗜好誘導を通じて個々の価値定義を学習し,パーソナライズされた報酬モデルを構築する。
本研究は, 価値整合行動の多様な定義を示し, システムによって各人の独自の理解を正確に捉えることができることを示す。
論文 参考訳(メタデータ) (2024-10-29T16:37:01Z) - Can Language Models Reason about Individualistic Human Values and Preferences? [44.249817353449146]
個人主義的価値推論の具体的な課題について言語モデル(LM)について検討する。
我々は,55%から65%の精度で個人主義的人間の価値を推論する,フロンティアLMの能力の限界を明らかにする。
提案した値不等式指数(sigmaINEQUITY)によって測定された大域的個人主義的価値の推論におけるLMの部分性も同定する。
論文 参考訳(メタデータ) (2024-10-04T19:03:41Z) - ValueCompass: A Framework of Fundamental Values for Human-AI Alignment [15.35489011078817]
本稿では,心理学的理論と体系的レビューに基づく基本的価値の枠組みであるバリューを紹介する。
本研究では,人間と言語モデル(LM)の価値アライメントを測定するために,実世界の4つのヴィグネットに価値を適用した。
以下に示すのは、人間とLMの危険な相違を明らかにすることであり、例えば、LMは人間によってほとんど意見が一致しない「自己のゴール」のような価値観と一致している。
論文 参考訳(メタデータ) (2024-09-15T02:13:03Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Moral Machine 実験に基づいて,MultiTP と呼ばれる100以上の言語でモラルジレンマヴィグネットの言語間コーパスを開発する。
分析では、19の異なるLLMと人間の判断を一致させ、6つのモラル次元をまたいだ嗜好を捉えた。
我々は、AIシステムにおける一様道徳的推論の仮定に挑戦し、言語間のアライメントの顕著なばらつきを発見した。
論文 参考訳(メタデータ) (2024-07-02T14:02:53Z) - Modelling Human Values for AI Reasoning [2.320648715016106]
我々は,その明示的な計算表現のために,人間の値の形式モデルを詳述する。
我々は、このモデルが、価値に対するAIベースの推論の基礎となる装置をいかに提供できるかを示す。
我々は、AIにおける人間の価値を統合し、学際的に研究するためのロードマップを提案する。
論文 参考訳(メタデータ) (2024-02-09T12:08:49Z) - Learning Human-like Representations to Enable Learning Human Values [11.236150405125754]
我々は,人間とAIエージェントの表現的アライメントが人的価値の学習に与える影響を考察する。
このような表現的アライメントは、パーソナライゼーションの文脈において、人間の価値を安全に学習し、探索する上で有効であることを示す。
論文 参考訳(メタデータ) (2023-12-21T18:31:33Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
大規模言語モデル(LLM)は、その価値を人間のものと整合させることを重要視している。
本研究では,LLMと不均一値の整合性を評価するため,不均一値アライメント評価(HVAE)システムを提案する。
論文 参考訳(メタデータ) (2023-05-26T02:34:20Z) - Enabling Classifiers to Make Judgements Explicitly Aligned with Human
Values [73.82043713141142]
性差別/人種差別の検出や毒性検出などの多くのNLP分類タスクは、人間の値に基づいている。
本稿では,コマンド内で明示的に記述された人間の値に基づいて予測を行う,値整合型分類のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-14T09:10:49Z) - ValueNet: A New Dataset for Human Value Driven Dialogue System [103.2044265617704]
本稿では,21,374のテキストシナリオに対する人間の態度を含む,ValueNetという大規模人的価値データセットを提案する。
総合的な経験的結果は、学習された価値モデルが幅広い対話作業に有用であることを示している。
ValueNetは、人間の価値モデリングのための最初の大規模テキストデータセットである。
論文 参考訳(メタデータ) (2021-12-12T23:02:52Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。