BLSP: Bootstrapping Language-Speech Pre-training via Behavior Alignment of Continuation Writing
- URL: http://arxiv.org/abs/2309.00916v2
- Date: Tue, 28 May 2024 14:26:28 GMT
- Title: BLSP: Bootstrapping Language-Speech Pre-training via Behavior Alignment of Continuation Writing
- Authors: Chen Wang, Minpeng Liao, Zhongqiang Huang, Jinliang Lu, Junhong Wu, Yuchen Liu, Chengqing Zong, Jiajun Zhang,
- Abstract summary: modality alignment between speech and text remains an open problem.
We propose the BLSP approach that bootstraps Language-Speech Pre-training via behavior alignment of continuation writing.
We demonstrate that this straightforward process can extend the capabilities of LLMs to speech, enabling speech recognition, speech translation, spoken language understanding, and speech conversation, even in zero-shot cross-lingual scenarios.
- Score: 35.31866559807704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of large language models (LLMs) has sparked significant interest in extending their remarkable language capabilities to speech. However, modality alignment between speech and text still remains an open problem. Current solutions can be categorized into two strategies. One is a cascaded approach where outputs (tokens or states) of a separately trained speech recognition system are used as inputs for LLMs, which limits their potential in modeling alignment between speech and text. The other is an end-to-end approach that relies on speech instruction data, which is very difficult to collect in large quantities. In this paper, we address these issues and propose the BLSP approach that Bootstraps Language-Speech Pre-training via behavior alignment of continuation writing. We achieve this by learning a lightweight modality adapter between a frozen speech encoder and an LLM, ensuring that the LLM exhibits the same generation behavior regardless of the modality of input: a speech segment or its transcript. The training process can be divided into two steps. The first step prompts an LLM to generate texts with speech transcripts as prefixes, obtaining text continuations. In the second step, these continuations are used as supervised signals to train the modality adapter in an end-to-end manner. We demonstrate that this straightforward process can extend the capabilities of LLMs to speech, enabling speech recognition, speech translation, spoken language understanding, and speech conversation, even in zero-shot cross-lingual scenarios.
Related papers
- IntrinsicVoice: Empowering LLMs with Intrinsic Real-time Voice Interaction Abilities [55.11130688075417]
We introduce IntrinsicVoic,e an LLM designed with intrinsic real-time voice interaction capabilities.
Our novelty architecture, GroupFormer, can reduce speech sequences to lengths comparable to text sequences.
We construct a multi-turn speech-to-speech dialogue dataset named method-500k which includes nearly 500k turns of speech-to-speech dialogues.
arXiv Detail & Related papers (2024-10-09T05:04:31Z) - Recent Advances in Speech Language Models: A Survey [45.968078636811356]
Speech Language Models (SpeechLMs) are end-to-end models that generate speech without converting from text.
This paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs.
arXiv Detail & Related papers (2024-10-01T21:48:12Z) - Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - Prompting Large Language Models with Audio for General-Purpose Speech Summarization [13.415189715216354]
We introduce a framework for speech summarization that leverages the processing and reasoning capabilities of large language models (LLMs)
We propose an end-to-end system that combines an instruction-tuned LLM with an audio encoder that converts speech into token representations that the LLM can interpret.
arXiv Detail & Related papers (2024-06-10T02:04:28Z) - BLSP-KD: Bootstrapping Language-Speech Pre-training via Knowledge Distillation [18.329192763760034]
We introduce BLSP-KD, a novel approach for Bootstrapping Language-Speech Pretraining via Knowledge Distillation.
It optimize speech-text alignment by minimizing the divergence between the LLM's next-token prediction distributions for speech and text inputs.
It also employs a continuous-integrate-andfire strategy to segment speech into tokens that correspond one-to-one with text tokens, enabling fine-grained alignment.
arXiv Detail & Related papers (2024-05-29T12:32:08Z) - Instruction-Following Speech Recognition [21.591086644665197]
We introduce instruction-following speech recognition, training a Listen-Attend-Spell model to understand and execute a diverse set of free-form text instructions.
Remarkably, our model, trained from scratch on Librispeech, interprets and executes simple instructions without requiring Large Language Models or pre-trained speech modules.
arXiv Detail & Related papers (2023-09-18T14:59:10Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - Discrete Cross-Modal Alignment Enables Zero-Shot Speech Translation [71.35243644890537]
End-to-end Speech Translation (ST) aims at translating the source language speech into target language text without generating the intermediate transcriptions.
Existing zero-shot methods fail to align the two modalities of speech and text into a shared semantic space.
We propose a novel Discrete Cross-Modal Alignment (DCMA) method that employs a shared discrete vocabulary space to accommodate and match both modalities of speech and text.
arXiv Detail & Related papers (2022-10-18T03:06:47Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
We propose a cross-modal Speech and Language Model (SpeechLM) to align speech and text pre-training with a pre-defined unified representation.
Specifically, we introduce two alternative discrete tokenizers to bridge the speech and text modalities.
We evaluate SpeechLM on various spoken language processing tasks including speech recognition, speech translation, and universal representation evaluation framework SUPERB.
arXiv Detail & Related papers (2022-09-30T09:12:10Z) - Speak or Chat with Me: End-to-End Spoken Language Understanding System
with Flexible Inputs [21.658650440278063]
We propose a novel system that can predict intents from flexible types of inputs: speech, ASR transcripts, or both.
Our experiments show significant advantages for these pre-training and fine-tuning strategies, resulting in a system that achieves competitive intent-classification performance.
arXiv Detail & Related papers (2021-04-07T20:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.