ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models
- URL: http://arxiv.org/abs/2507.20091v1
- Date: Sun, 27 Jul 2025 00:59:01 GMT
- Title: ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models
- Authors: Kaizhi Qian, Xulin Fan, Junrui Ni, Slava Shechtman, Mark Hasegawa-Johnson, Chuang Gan, Yang Zhang,
- Abstract summary: We propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody.<n>We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone.
- Score: 70.56468982313834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech language models refer to language models with speech processing and understanding capabilities. One key desirable capability for speech language models is the ability to capture the intricate interdependency between content and prosody. The existing mainstream paradigm of training speech language models, which converts speech into discrete tokens before feeding them into LLMs, is sub-optimal in learning prosody information -- we find that the resulting LLMs do not exhibit obvious emerging prosody processing capabilities via pre-training alone. To overcome this, we propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody. Each speech utterance is first transcribed into text, followed by a sequence of word-level prosody tokens. Compared with conventional speech tokenization schemes, the proposed tokenization scheme retains more complete prosody information, and is more understandable to text-based LLMs. We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone, ranging from harnessing the prosody nuances in generated speech, such as contrastive focus, understanding emotion and stress in an utterance, to maintaining prosody consistency in long contexts.
Related papers
- Speech-Language Models with Decoupled Tokenizers and Multi-Token Prediction [58.55905182336196]
Speech-language synthesis models (SLMs) offer a promising path toward unifying speech and text understanding and generation.<n>We investigate the impact of key components (i.e., speech tokenizers, speech heads, and speaker modeling) on the performance of SLMs.
arXiv Detail & Related papers (2025-06-14T15:26:31Z) - Self-Powered LLM Modality Expansion for Large Speech-Text Models [62.27700381806554]
Large language models (LLMs) exhibit remarkable performance across diverse tasks.
This study aims to refine the use of speech datasets for LSM training by addressing the limitations of vanilla instruction tuning.
We introduce a self-powered LSM that leverages augmented automatic speech recognition data generated by the model itself for more effective instruction tuning.
arXiv Detail & Related papers (2024-10-04T04:34:24Z) - Frozen Large Language Models Can Perceive Paralinguistic Aspects of Speech [29.847183061204436]
This work studies the capabilities of a large language model (LLM) to understand paralinguistic aspects of speech without fine-tuning its weights.<n>We utilize an end-to-end system with a speech encoder, which is trained to produce token embeddings such that the LLM's response to an expressive speech prompt is aligned with its response to a semantically matching text prompt.
arXiv Detail & Related papers (2024-10-02T01:32:47Z) - DeSTA2: Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)<n>We present a simple yet effective automatic process for creating speech-text pair data.<n>Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - LAST: Language Model Aware Speech Tokenization [24.185165710384997]
We propose a novel approach to training a speech tokenizer by leveraging objectives from pre-trained textual LMs.
Our aim is to transform features from a pre-trained speech model into a new feature space that enables better clustering for speech LMs.
arXiv Detail & Related papers (2024-09-05T16:57:39Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment [82.86363991170546]
We propose a Descriptive Speech-Text Alignment approach that leverages speech captioning to bridge the gap between speech and text modalities.
Our model demonstrates superior performance on the Dynamic-SUPERB benchmark, particularly in generalizing to unseen tasks.
These findings highlight the potential to reshape instruction-following SLMs by incorporating descriptive rich, speech captions.
arXiv Detail & Related papers (2024-06-27T03:52:35Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - Instruction-Following Speech Recognition [21.591086644665197]
We introduce instruction-following speech recognition, training a Listen-Attend-Spell model to understand and execute a diverse set of free-form text instructions.
Remarkably, our model, trained from scratch on Librispeech, interprets and executes simple instructions without requiring Large Language Models or pre-trained speech modules.
arXiv Detail & Related papers (2023-09-18T14:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.