Knowledge Graph Embeddings for Multi-Lingual Structured Representations
of Radiology Reports
- URL: http://arxiv.org/abs/2309.00917v2
- Date: Thu, 14 Sep 2023 14:25:37 GMT
- Title: Knowledge Graph Embeddings for Multi-Lingual Structured Representations
of Radiology Reports
- Authors: Tom van Sonsbeek, Xiantong Zhen and Marcel Worring
- Abstract summary: We introduce a novel light-weight graph-based embedding method specifically catering radiology reports.
It takes into account the structure and composition of the report, while also connecting medical terms in the report.
We show the use of this embedding on two tasks namely disease classification of X-ray reports and image classification.
- Score: 40.606143019674654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The way we analyse clinical texts has undergone major changes over the last
years. The introduction of language models such as BERT led to adaptations for
the (bio)medical domain like PubMedBERT and ClinicalBERT. These models rely on
large databases of archived medical documents. While performing well in terms
of accuracy, both the lack of interpretability and limitations to transfer
across languages limit their use in clinical setting. We introduce a novel
light-weight graph-based embedding method specifically catering radiology
reports. It takes into account the structure and composition of the report,
while also connecting medical terms in the report through the multi-lingual
SNOMED Clinical Terms knowledge base. The resulting graph embedding uncovers
the underlying relationships among clinical terms, achieving a representation
that is better understandable for clinicians and clinically more accurate,
without reliance on large pre-training datasets. We show the use of this
embedding on two tasks namely disease classification of X-ray reports and image
classification. For disease classification our model is competitive with its
BERT-based counterparts, while being magnitudes smaller in size and training
data requirements. For image classification, we show the effectiveness of the
graph embedding leveraging cross-modal knowledge transfer and show how this
method is usable across different languages.
Related papers
- Improving Extraction of Clinical Event Contextual Properties from Electronic Health Records: A Comparative Study [2.0884301753594334]
This study performs a comparative analysis of various natural language models for medical text classification.
BERT outperforms Bi-LSTM models by up to 28% and the baseline BERT model by up to 16% for recall of the minority classes.
arXiv Detail & Related papers (2024-08-30T10:28:49Z) - IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training [15.04212780946932]
We propose a novel framework named IMITATE to learn the structure information from medical reports with hierarchical vision-language alignment.
The framework derives multi-level visual features from the chest X-ray (CXR) images and separately aligns these features with the descriptive and the conclusive text encoded in the hierarchical medical report.
arXiv Detail & Related papers (2023-10-11T10:12:43Z) - Hierarchical Pretraining for Biomedical Term Embeddings [4.69793648771741]
We propose HiPrBERT, a novel biomedical term representation model trained on hierarchical data.
We show that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications.
arXiv Detail & Related papers (2023-07-01T08:16:00Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - sEHR-CE: Language modelling of structured EHR data for efficient and
generalizable patient cohort expansion [0.0]
sEHR-CE is a novel framework based on transformers to enable integrated phenotyping and analyses of heterogeneous clinical datasets.
We validate our approach using primary and secondary care data from the UK Biobank, a large-scale research study.
arXiv Detail & Related papers (2022-11-30T16:00:43Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
We investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the English language.
We evaluate these strategies for a Greek and a Spanish clinic leveraging clinical notes from different clinical domains.
Our results show that using multilingual data overall improves clinical phenotyping models and can compensate for data sparseness.
arXiv Detail & Related papers (2022-08-03T08:33:21Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
This paper introduces the technique of contextualized word embedding to better capture the semantic meaning of each word based on its context.
We pre-train two deep contextualized language models, Clinical Embeddings from Language Model (C-ELMo) and Clinical Contextual String Embeddings (C-Flair)
Explicit experiments show that our models gain dramatic improvements compared to both static word embeddings and domain-generic language models.
arXiv Detail & Related papers (2021-06-23T18:12:58Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.