Entanglement phase transitions in non-Hermitian quasicrystals
- URL: http://arxiv.org/abs/2309.00924v3
- Date: Wed, 17 Jan 2024 00:07:27 GMT
- Title: Entanglement phase transitions in non-Hermitian quasicrystals
- Authors: Longwen Zhou
- Abstract summary: We uncover entanglement phase transitions in one-dimensional non-Hermitian quasicrystals.
We identify two types of entanglement transitions with different scaling laws and critical behaviors.
Our results thus advanced the study of entanglement transitions in non-Hermitian disordered systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The scaling law of entanglement entropy could undergo qualitative changes
during the nonunitary evolution of a quantum many-body system. In this work, we
uncover such entanglement phase transitions in one-dimensional non-Hermitian
quasicrystals (NHQCs). We identify two types of entanglement transitions with
different scaling laws and critical behaviors due to the interplay between
non-Hermitian effects and quasiperiodic potentials. The first type represents a
typical volume-law to area-law transition, which happens together with a
PT-symmetry breaking and a localization transition. The second type features an
abnormal log-law to area-law transition, which is mediated by a critical phase
with a volume-law scaling in the steady-state entanglement entropy. These
entangling phases and transitions are demonstrated in two representative models
of NHQCs. Our results thus advanced the study of entanglement transitions in
non-Hermitian disordered systems and further disclosed the rich entanglement
patterns in NHQCs.
Related papers
- Many-body phase transitions in a non-Hermitian Ising chain [0.8749675983608172]
We study many-body phase transitions in a one-dimensional ferromagnetic transversed field Ising model with an imaginary field.
We show that the system exhibits three phase transitions: one second-order phase transition and two $mathcalPT$ phase transitions.
arXiv Detail & Related papers (2023-11-19T06:32:12Z) - Entanglement phase transitions in non-Hermitian Floquet systems [0.0]
In this work, we reveal entanglement transitions in the context of non-Hermitian Floquet systems.
We find that the monotonic increase of quenched hopping amplitude could flip the system between volume-law and area-law entangled Floquet phases.
Our findings build a foundation for exploring entanglement phase transitions in Floquet non-Hermitian setups.
arXiv Detail & Related papers (2023-10-17T15:40:12Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Dynamics and Phases of Nonunitary Floquet Transverse-Field Ising Model [0.5141137421503899]
We analyze the nonunitary Floquet- transverse-field I integrable model with complex nearest-neighbor couplings and complex transverse fields.
The scaling of entanglement entropy in steady states and the evolution after a quench are compatible with the non-Hermitian generalization of the quasiparticle picture of Calabrese and Cardy.
arXiv Detail & Related papers (2023-06-12T21:15:11Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Localization and topological transitions in non-Hermitian quasiperiodic
lattices [1.6530012863603747]
We investigate the localization and topological transitions in a one-dimensional non-Hermitian quasiperiodic lattice.
For interacting spinless fermions, we demonstrate that the extended phase and the many-body localized phase can be identified by the entanglement entropy of eigenstates.
arXiv Detail & Related papers (2021-01-14T08:56:18Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.