Comparative Analysis of Deep Learning Architectures for Breast Cancer
Diagnosis Using the BreaKHis Dataset
- URL: http://arxiv.org/abs/2309.01007v2
- Date: Sun, 10 Sep 2023 17:10:05 GMT
- Title: Comparative Analysis of Deep Learning Architectures for Breast Cancer
Diagnosis Using the BreaKHis Dataset
- Authors: \.Irem Say{\i}n, Muhammed Ali Soyda\c{s}, Yunus Emre Mert, Arda
Yarkata\c{s}, Berk Ergun, Selma S\"ozen Yeh, H\"useyin \"Uvet
- Abstract summary: In this study, we use and compare the performance of five well-known deep learning models for cancer classification.
The results placed the Xception model at the top, with an F1 score of 0.9 and an accuracy of 89%.
The F1 score for the Inception model was 87, while that for the InceptionResNet model was 86.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer is an extremely difficult and dangerous health problem because it
manifests in so many different ways and affects so many different organs and
tissues. The primary goal of this research was to evaluate deep learning
models' ability to correctly identify breast cancer cases using the BreakHis
dataset. The BreakHis dataset covers a wide range of breast cancer subtypes
through its huge collection of histopathological pictures. In this study, we
use and compare the performance of five well-known deep learning models for
cancer classification: VGG, ResNet, Xception, Inception, and InceptionResNet.
The results placed the Xception model at the top, with an F1 score of 0.9 and
an accuracy of 89%. At the same time, the Inception and InceptionResNet models
both hit accuracy of 87% . However, the F1 score for the Inception model was
87, while that for the InceptionResNet model was 86. These results demonstrate
the importance of deep learning methods in making correct breast cancer
diagnoses. This highlights the potential to provide improved diagnostic
services to patients. The findings of this study not only improve current
methods of cancer diagnosis, but also make significant contributions to the
creation of new and improved cancer treatment strategies. In a nutshell, the
results of this study represent a major advancement in the direction of
achieving these vital healthcare goals.
Related papers
- A study on Deep Convolutional Neural Networks, Transfer Learning and Ensemble Model for Breast Cancer Detection [2.5748316361772963]
This study compares the performance of D-CNN, which includes the original CNN, transfer learning, and an ensemble model, in detecting breast cancer.
The ensemble model provides the highest detection and classification accuracy of 99.94% for breast cancer detection and classification.
The high accuracy in detecting and categorising breast cancer detection using CNN suggests that the CNN model is promising in breast cancer disease detection.
arXiv Detail & Related papers (2024-09-10T17:58:21Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Predictive Modeling for Breast Cancer Classification in the Context of Bangladeshi Patients: A Supervised Machine Learning Approach with Explainable AI [0.0]
We evaluate and compare the classification accuracy, precision, recall, and F-1 scores of five different machine learning methods.
XGBoost achieved the best model accuracy, which is 97%.
arXiv Detail & Related papers (2024-04-06T17:23:21Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Improved Breast Cancer Diagnosis through Transfer Learning on
Hematoxylin and Eosin Stained Histology Images [3.7498611358320733]
In this study, the most recent BRACS dataset of histological (H&E) stained images was used to classify breast cancer tumours.
We have experimented using different pre-trained deep learning models, such as Xception, EfficientNet, ResNet50, and InceptionResNet, pre-trained on the ImageNet weights.
arXiv Detail & Related papers (2023-09-15T20:16:17Z) - Breast Cancer Detection and Diagnosis: A comparative study of
state-of-the-arts deep learning architectures [3.883460584034766]
The survival rates for breast cancer patients in certain third-world countries, like South Africa, are alarmingly low.
Medical specialists and researchers have turned to domain-specific AI approaches, specifically deep learning models, to develop end-to-end solutions.
This research focuses on evaluating the performance of various cutting-edge convolutional neural network (CNN) architectures in comparison to a relatively new model called the Vision Trans-former (ViT)
arXiv Detail & Related papers (2023-05-31T15:21:34Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - BCNet: A Deep Convolutional Neural Network for Breast Cancer Grading [0.0]
Deep learning has been recently adopted widely in different areas of science, especially medicine.
In breast cancer detection problems, some diverse deep learning techniques have been developed on different datasets and resulted in good accuracy.
arXiv Detail & Related papers (2021-07-11T12:55:33Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.