Improved Breast Cancer Diagnosis through Transfer Learning on
Hematoxylin and Eosin Stained Histology Images
- URL: http://arxiv.org/abs/2309.08745v2
- Date: Fri, 24 Nov 2023 11:18:10 GMT
- Title: Improved Breast Cancer Diagnosis through Transfer Learning on
Hematoxylin and Eosin Stained Histology Images
- Authors: Fahad Ahmed, Reem Abdel-Salam, Leon Hamnett, Mary Adewunmi, Temitope
Ayano
- Abstract summary: In this study, the most recent BRACS dataset of histological (H&E) stained images was used to classify breast cancer tumours.
We have experimented using different pre-trained deep learning models, such as Xception, EfficientNet, ResNet50, and InceptionResNet, pre-trained on the ImageNet weights.
- Score: 3.7498611358320733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer is one of the leading causes of death for women worldwide.
Early screening is essential for early identification, but the chance of
survival declines as the cancer progresses into advanced stages. For this
study, the most recent BRACS dataset of histological (H\&E) stained images was
used to classify breast cancer tumours, which contains both the whole-slide
images (WSI) and region-of-interest (ROI) images, however, for our study we
have considered ROI images. We have experimented using different pre-trained
deep learning models, such as Xception, EfficientNet, ResNet50, and
InceptionResNet, pre-trained on the ImageNet weights. We pre-processed the
BRACS ROI along with image augmentation, upsampling, and dataset split
strategies. For the default dataset split, the best results were obtained by
ResNet50 achieving 66% f1-score. For the custom dataset split, the best results
were obtained by performing upsampling and image augmentation which results in
96.2% f1-score. Our second approach also reduced the number of false positive
and false negative classifications to less than 3% for each class. We believe
that our study significantly impacts the early diagnosis and identification of
breast cancer tumors and their subtypes, especially atypical and malignant
tumors, thus improving patient outcomes and reducing patient mortality rates.
Overall, this study has primarily focused on identifying seven (7) breast
cancer tumor subtypes, and we believe that the experimental models can be
fine-tuned further to generalize over previous breast cancer histology datasets
as well.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Comparative Analysis of Deep Learning Architectures for Breast Cancer
Diagnosis Using the BreaKHis Dataset [0.0]
In this study, we use and compare the performance of five well-known deep learning models for cancer classification.
The results placed the Xception model at the top, with an F1 score of 0.9 and an accuracy of 89%.
The F1 score for the Inception model was 87, while that for the InceptionResNet model was 86.
arXiv Detail & Related papers (2023-09-02T19:02:50Z) - CEIMVEN: An Approach of Cutting Edge Implementation of Modified Versions of EfficientNet (V1-V2) Architecture for Breast Cancer Detection and Classification from Ultrasound Images [0.0]
Breast cancer remains the major one for being the reason of largest number of demise of women.
In the recent time of research, Medical Image Computing and Processing has been playing a significant role for detecting and classifying breast cancers from ultrasound images and mammograms, along with deep neural networks.
In this research, we focused mostly on our rigorous implementations and iterative result analysis of different cutting-edge modified versions of EfficientNet.
arXiv Detail & Related papers (2023-08-25T13:05:06Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - Classification of Breast Tumours Based on Histopathology Images Using
Deep Features and Ensemble of Gradient Boosting Methods [0.0]
Deep feature transfer learning is used as the main idea of the proposed CAD system's feature extractor.
Inception-ResNet-v2 has shown the best feature extraction capability in the case of breast cancer histopathology images.
In the classification phase, the ensemble of CatBoost, XGBoost and LightGBM has provided the best average accuracy.
arXiv Detail & Related papers (2022-09-03T09:27:00Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - BCNet: A Deep Convolutional Neural Network for Breast Cancer Grading [0.0]
Deep learning has been recently adopted widely in different areas of science, especially medicine.
In breast cancer detection problems, some diverse deep learning techniques have been developed on different datasets and resulted in good accuracy.
arXiv Detail & Related papers (2021-07-11T12:55:33Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.