論文の概要: Streaming Active Learning for Regression Problems Using Regression via
Classification
- arxiv url: http://arxiv.org/abs/2309.01013v2
- Date: Fri, 15 Dec 2023 16:01:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 18:56:41.660258
- Title: Streaming Active Learning for Regression Problems Using Regression via
Classification
- Title(参考訳): 分類による回帰を用いた回帰問題に対するストリーミングアクティブ学習
- Authors: Shota Horiguchi, Kota Dohi, Yohei Kawaguchi
- Abstract要約: 本稿では,回帰学習のためのストリーミング能動学習にレグレッション・ウィズ・クラス化フレームワークを用いることを提案する。
レグレッション・ウィズ・クラス化は回帰問題を分類問題に変換し、ストリーミング能動学習法を回帰問題に直接適用できるようにする。
- 参考スコア(独自算出の注目度): 12.572218568705376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the challenges in deploying a machine learning model is that the
model's performance degrades as the operating environment changes. To maintain
the performance, streaming active learning is used, in which the model is
retrained by adding a newly annotated sample to the training dataset if the
prediction of the sample is not certain enough. Although many streaming active
learning methods have been proposed for classification, few efforts have been
made for regression problems, which are often handled in the industrial field.
In this paper, we propose to use the regression-via-classification framework
for streaming active learning for regression. Regression-via-classification
transforms regression problems into classification problems so that streaming
active learning methods proposed for classification problems can be applied
directly to regression problems. Experimental validation on four real data sets
shows that the proposed method can perform regression with higher accuracy at
the same annotation cost.
- Abstract(参考訳): マシンラーニングモデルをデプロイする上での課題のひとつは、運用環境が変化すると、モデルのパフォーマンスが低下することです。
パフォーマンスを維持するために、サンプルの予測が十分でない場合には、トレーニングデータセットに新たに注釈付きサンプルを追加して、モデルの再トレーニングを行うストリーミングアクティブラーニングが使用される。
多くのストリーミングアクティブな学習手法が分類のために提案されているが、産業分野でよく扱われる回帰問題に対する取り組みはほとんど行われていない。
本稿では,回帰学習のためのストリーミング能動学習のための回帰情報分類フレームワークを提案する。
レグレッション・ウィズ・クラス化は回帰問題を分類問題に変換し、分類問題に提案されたストリーミングアクティブラーニング手法を回帰問題に直接適用できるようにする。
4つの実データ集合に対する実験的検証により,提案手法は同一のアノテーションコストで高い精度で回帰を行うことができることを示す。
関連論文リスト
- Active learning for regression in engineering populations: A risk-informed approach [0.0]
回帰は、データ中心のエンジニアリングアプリケーションで一般的な基本的な予測タスクである。
アクティブラーニング(英: Active Learning)は、リソース効率のよい特徴ラベルペアを優先的に取得する手法である。
提案手法は, 予測性能を維持しつつ, 必要な検査回数を削減し, 予測コストの観点から優れた性能を有することを示す。
論文 参考訳(メタデータ) (2024-09-06T15:03:42Z) - Robust Capped lp-Norm Support Vector Ordinal Regression [85.84718111830752]
正規回帰は、ラベルが固有の順序を示す特殊な教師付き問題である。
卓越した順序回帰モデルとしてのベクトル順序回帰は、多くの順序回帰タスクで広く使われている。
我々は,新たなモデルであるCapped $ell_p$-Norm Support Vector Ordinal Regression (CSVOR)を導入する。
論文 参考訳(メタデータ) (2024-04-25T13:56:05Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - Reducing Representation Drift in Online Continual Learning [87.71558506591937]
私たちは、エージェントが制限されたメモリと計算で変化する分布から学ぶ必要があるオンライン連続学習パラダイムを研究します。
この作業では、入ってくるデータストリームに未観測のクラスサンプルが導入されることにより、事前に観測されたデータの表現の変化に焦点を合わせます。
論文 参考訳(メタデータ) (2021-04-11T15:19:30Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - An Efficient Method of Training Small Models for Regression Problems
with Knowledge Distillation [1.433758865948252]
回帰問題に対する知識蒸留の新しい定式化を提案する。
まず,教師モデル予測を用いて,教師モデルを用いた学習サンプルの退学率を下げる新たな損失関数,教師の退学率の減少を提案する。
マルチタスクネットワークを考えることで、学生モデルの特徴抽出の訓練がより効果的になる。
論文 参考訳(メタデータ) (2020-02-28T08:46:12Z) - A Graph-Based Approach for Active Learning in Regression [37.42533189350655]
アクティブラーニングは、ラベルのないプールから最も重要なデータポイントに注釈を付けることで、ラベル付けの労力を減らすことを目的としている。
回帰法における既存のアクティブラーニングのほとんどは、各アクティブラーニングイテレーションで学習した回帰関数を使用して、クエリする次の情報ポイントを選択する。
本稿では,新しい二部グラフ最適化問題として,逐次およびバッチモードのアクティブレグレッションを定式化する特徴に着目したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-30T00:59:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。