論文の概要: Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion
- arxiv url: http://arxiv.org/abs/2309.01113v1
- Date: Sun, 3 Sep 2023 08:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 21:22:16.298274
- Title: Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion
- Title(参考訳): ハイブリッドスーパービジョンデュアルサーチ:ロスフリーマルチ露光画像融合のための自動学習の活用
- Authors: Guanyao Wu, Hongming Fu, Jinyuan Liu, Long Ma, Xin Fan, Risheng Liu
- Abstract要約: マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
- 参考スコア(独自算出の注目度): 60.221404321514086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-exposure image fusion (MEF) has emerged as a prominent solution to
address the limitations of digital imaging in representing varied exposure
levels. Despite its advancements, the field grapples with challenges, notably
the reliance on manual designs for network structures and loss functions, and
the constraints of utilizing simulated reference images as ground truths.
Consequently, current methodologies often suffer from color distortions and
exposure artifacts, further complicating the quest for authentic image
representation. In addressing these challenges, this paper presents a
Hybrid-Supervised Dual-Search approach for MEF, dubbed HSDS-MEF, which
introduces a bi-level optimization search scheme for automatic design of both
network structures and loss functions. More specifically, we harnesses a unique
dual research mechanism rooted in a novel weighted structure refinement
architecture search. Besides, a hybrid supervised contrast constraint
seamlessly guides and integrates with searching process, facilitating a more
adaptive and comprehensive search for optimal loss functions. We realize the
state-of-the-art performance in comparison to various competitive schemes,
yielding a 10.61% and 4.38% improvement in Visual Information Fidelity (VIF)
for general and no-reference scenarios, respectively, while providing results
with high contrast, rich details and colors.
- Abstract(参考訳): マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
その進歩にもかかわらず、フィールドは、特にネットワーク構造と損失関数のマニュアル設計への依存、シミュレーションされた参照イメージを基礎的な真実として利用するという制約など、課題に悩まされている。
そのため、現在の方法論では色歪や露出アーティファクトに苦しむことが多く、さらに本物の画像表現の探求を複雑にしている。
本稿では,ネットワーク構造と損失関数の両方の自動設計のための二段階最適化探索手法であるhsds-mef(hsds-mef)を提案する。
より具体的には、新しい重み付け構造洗練アーキテクチャ探索に根ざしたユニークな二重研究機構を利用する。
さらに、ハイブリッド教師付きコントラスト制約は、探索プロセスをシームレスにガイドし、統合し、最適損失関数のより適応的で包括的な探索を容易にする。
我々は,様々な競争方式と比較して最先端の性能を実現し,視覚情報忠実度(VIF)の10.61%と4.38%の改善を実現し,高いコントラスト,リッチディテール,カラー化を実現した。
関連論文リスト
- Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
本稿では,露光ブラケット写真を利用して画像復元と拡張作業を統合することを提案する。
実世界のペアの収集が困難であるため,まず合成ペアデータを用いてモデルを事前学習する手法を提案する。
特に,時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - Searching a Compact Architecture for Robust Multi-Exposure Image Fusion [55.37210629454589]
2つの大きなスタブリングブロックは、画素の不一致や非効率な推論など、開発を妨げる。
本研究では,高機能なマルチ露光画像融合のための自己アライメントとディテールリプレクションモジュールを取り入れたアーキテクチャ検索に基づくパラダイムを提案する。
提案手法は様々な競争方式より優れており、一般的なシナリオではPSNRが3.19%向上し、不整合シナリオでは23.5%向上した。
論文 参考訳(メタデータ) (2023-05-20T17:01:52Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
低画質の原画像のバーストから空間的精度の高い高画質画像を再構成する新しいGated Multi-Resolution Transfer Network (GMTNet)を提案する。
5つのデータセットに関する詳細な実験分析は、我々のアプローチを検証し、バースト超解像、バーストデノイング、低照度バーストエンハンスメントのための最先端技術を設定する。
論文 参考訳(メタデータ) (2023-04-13T17:54:00Z) - Light Field Reconstruction via Deep Adaptive Fusion of Hybrid Lenses [67.01164492518481]
本稿では,ハイブリットレンズを用いた高分解能光場(LF)画像の再構成問題について検討する。
本稿では,入力の特徴を包括的に活用できる新しいエンドツーエンド学習手法を提案する。
我々のフレームワークは、高解像度なLFデータ取得のコストを削減し、LFデータストレージと送信の恩恵を受ける可能性がある。
論文 参考訳(メタデータ) (2021-02-14T06:44:47Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
イメージスーパーレゾリューション(sr)は、低解像度光センサの画質を向上させる有望な技術である。
本稿では,安価なチャネル(可視・深度)からの補完情報を活用して,少ないパラメータを用いて高価なチャネル(熱)の画像品質を向上させる。
論文 参考訳(メタデータ) (2020-12-07T02:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。