論文の概要: Cognition-Mode Aware Variational Representation Learning Framework for
Knowledge Tracing
- arxiv url: http://arxiv.org/abs/2309.01179v1
- Date: Sun, 3 Sep 2023 13:51:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 21:03:08.159139
- Title: Cognition-Mode Aware Variational Representation Learning Framework for
Knowledge Tracing
- Title(参考訳): 知識トレースのための認知モードを考慮した変分表現学習フレームワーク
- Authors: Moyu Zhang, Xinning Zhu, Chunhong Zhang, Feng Pan, Wenchen Qian, and
Hui Zhao
- Abstract要約: 知識追跡タスクは、パーソナライズされた学習において重要な役割を果たす。
KTタスクはデータの分散に悩まされており、実践記録がほとんどない学生の堅牢な表現を学習することは困難である。
既存のKT手法に直接適用可能なCMVF(Cognition-Mode Aware Variational Representation Learning Framework)を提案する。
- 参考スコア(独自算出の注目度): 3.3036318543432417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Knowledge Tracing (KT) task plays a crucial role in personalized
learning, and its purpose is to predict student responses based on their
historical practice behavior sequence. However, the KT task suffers from data
sparsity, which makes it challenging to learn robust representations for
students with few practice records and increases the risk of model overfitting.
Therefore, in this paper, we propose a Cognition-Mode Aware Variational
Representation Learning Framework (CMVF) that can be directly applied to
existing KT methods. Our framework uses a probabilistic model to generate a
distribution for each student, accounting for uncertainty in those with limited
practice records, and estimate the student's distribution via variational
inference (VI). In addition, we also introduce a cognition-mode aware
multinomial distribution as prior knowledge that constrains the posterior
student distributions learning, so as to ensure that students with similar
cognition modes have similar distributions, avoiding overwhelming
personalization for students with few practice records. At last, extensive
experimental results confirm that CMVF can effectively aid existing KT methods
in learning more robust student representations. Our code is available at
https://github.com/zmy-9/CMVF.
- Abstract(参考訳): ナレッジ・トレーシング(KT)タスクは、個人化学習において重要な役割を担い、その歴史的実践行動シーケンスに基づいて学生の反応を予測することを目的とする。
しかし、KTタスクはデータの分散に悩まされており、実践記録が少ない学生の堅牢な表現を学習することは困難であり、モデルオーバーフィットのリスクを増大させる。
そこで本稿では,既存のKT手法に直接適用可能なCMVF(Cognition-Mode Aware Variational Representation Learning Framework)を提案する。
提案手法では,確率モデルを用いて各学生の分布を推定し,練習記録が限られている生徒の不確かさを計算し,変分推論 (vi) により学生の分布を推定する。
また,学習履歴の少ない生徒の圧倒的なパーソナライゼーションを回避し,類似の認知モードを持つ生徒が同様の分布を持つことを保証するために,後生分布を制約する事前知識として認知モード認識多分野分布を導入する。
最後に、CMVFが既存のKT手法を効果的に支援し、より堅牢な学生表現を学習できることを確認する。
私たちのコードはhttps://github.com/zmy-9/cmvfで利用可能です。
関連論文リスト
- Collaborative Learning with Different Labeling Functions [7.228285747845779]
我々は、$n$のデータ分布ごとに正確な分類器を学習することを目的とした、協調型PAC学習の亜種について研究する。
データ分布がより弱い実現可能性の仮定を満たす場合、サンプル効率の学習は依然として可能であることを示す。
論文 参考訳(メタデータ) (2024-02-16T04:32:22Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
分散シフトが存在する場合、公正な機械学習モデルはテストデータに対して不公平に振る舞うことがある。
既存のアルゴリズムはデータへの完全なアクセスを必要とし、小さなバッチを使用する場合には使用できない。
本稿では,因果グラフの知識を必要としない収束保証付き分布安定度フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-20T23:25:28Z) - Learning to Retain while Acquiring: Combating Distribution-Shift in
Adversarial Data-Free Knowledge Distillation [31.294947552032088]
データフリーな知識蒸留(DFKD)は、教師から学生ニューラルネットワークへの知識伝達を、訓練データがない状態で行うという基本的な考え方により、近年人気を集めている。
本稿では,メタトレインとメタテストとして,知識獲得(新たに生成されたサンプルからの学習)と知識保持(以前に得られたサンプルの知識の保持)の課題を取り扱うことで,メタ学習にインスパイアされたフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-28T03:50:56Z) - When Do Curricula Work in Federated Learning? [56.88941905240137]
カリキュラム学習は非IID性を大幅に軽減する。
クライアント間でデータ配布を多様化すればするほど、学習の恩恵を受けるようになる。
本稿では,クライアントの現実的格差を生かした新しいクライアント選択手法を提案する。
論文 参考訳(メタデータ) (2022-12-24T11:02:35Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
本稿では,D-BAT(Diversity-By-dis-Agreement Training)を提案する。
我々は、D-BATが一般化された相違の概念から自然に現れることを示す。
論文 参考訳(メタデータ) (2022-02-09T12:03:02Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
深い予測モデルは、ラベル付きトレーニングデータという形で人間の監督に依存する。
Ask-n-Learnは,各アルゴリズムで推定されたペスドラベルを用いて得られる勾配埋め込みに基づく能動的学習手法である。
論文 参考訳(メタデータ) (2020-09-30T05:19:56Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Analyzing Student Strategies In Blended Courses Using Clickstream Data [32.81171098036632]
パターンマイニングと、自然言語処理から借用したモデルを用いて、学生のインタラクションを理解します。
きめ細かいクリックストリームデータは、非商業的な教育支援システムであるDiderotを通じて収集される。
提案手法は,混合コースの低データ設定においても有意な洞察を得られることが示唆された。
論文 参考訳(メタデータ) (2020-05-31T03:01:00Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
我々は,LFME(Learning From Multiple Experts)と呼ばれる自己評価型知識蒸留フレームワークを提案する。
提案するLFMEフレームワークは,複数の'Experts'からの知識を集約して,統一された学生モデルを学ぶ。
提案手法は,最先端の手法に比べて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-01-06T12:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。