Adv3D: Generating 3D Adversarial Examples for 3D Object Detection in Driving Scenarios with NeRF
- URL: http://arxiv.org/abs/2309.01351v2
- Date: Tue, 6 Aug 2024 02:58:13 GMT
- Title: Adv3D: Generating 3D Adversarial Examples for 3D Object Detection in Driving Scenarios with NeRF
- Authors: Leheng Li, Qing Lian, Ying-Cong Chen,
- Abstract summary: Adv3D is the first exploration of modeling adversarial examples as Neural Radiance Fields (NeRFs)
NeRFs provide photorealistic appearances and 3D accurate generation, yielding a more realistic and realizable adversarial example.
We propose primitive-aware sampling and semantic-guided regularization that enable 3D patch attacks with camouflage adversarial texture.
- Score: 19.55666600076762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have been proven extremely susceptible to adversarial examples, which raises special safety-critical concerns for DNN-based autonomous driving stacks (i.e., 3D object detection). Although there are extensive works on image-level attacks, most are restricted to 2D pixel spaces, and such attacks are not always physically realistic in our 3D world. Here we present Adv3D, the first exploration of modeling adversarial examples as Neural Radiance Fields (NeRFs). Advances in NeRF provide photorealistic appearances and 3D accurate generation, yielding a more realistic and realizable adversarial example. We train our adversarial NeRF by minimizing the surrounding objects' confidence predicted by 3D detectors on the training set. Then we evaluate Adv3D on the unseen validation set and show that it can cause a large performance reduction when rendering NeRF in any sampled pose. To generate physically realizable adversarial examples, we propose primitive-aware sampling and semantic-guided regularization that enable 3D patch attacks with camouflage adversarial texture. Experimental results demonstrate that the trained adversarial NeRF generalizes well to different poses, scenes, and 3D detectors. Finally, we provide a defense method to our attacks that involves adversarial training through data augmentation. Project page: https://len-li.github.io/adv3d-web
Related papers
- NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields [57.617972778377215]
We show how to generate effective 3D representations from posed RGB images.
We pretrain this representation at scale on our proposed curated posed-RGB data, totaling over 1.8 million images.
Our novel self-supervised pretraining for NeRFs, NeRF-MAE, scales remarkably well and improves performance on various challenging 3D tasks.
arXiv Detail & Related papers (2024-04-01T17:59:55Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Passive Defense Against 3D Adversarial Point Clouds Through the Lens of
3D Steganalysis [1.14219428942199]
A 3D adversarial point cloud detector is designed through the lens of 3D steganalysis.
To our knowledge, this work is the first to apply 3D steganalysis to 3D adversarial example defense.
arXiv Detail & Related papers (2022-05-18T06:19:15Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
In safety-critical settings, robustness on out-of-distribution and long-tail samples is fundamental to circumvent dangerous issues.
We substantially improve the generalization of 3D object detectors to out-of-domain data by taking into account deformed point clouds during training.
We propose and share open source CrashD: a synthetic dataset of realistic damaged and rare cars.
arXiv Detail & Related papers (2021-12-09T08:50:54Z) - Generating Unrestricted 3D Adversarial Point Clouds [9.685291478330054]
deep learning for 3D point clouds is still vulnerable to adversarial attacks.
We propose an Adversarial Graph-Convolutional Generative Adversarial Network (AdvGCGAN) to generate realistic adversarial 3D point clouds.
arXiv Detail & Related papers (2021-11-17T08:30:18Z) - Towards Universal Physical Attacks On Cascaded Camera-Lidar 3D Object
Detection Models [16.7400223249581]
We propose a universal and physically realizable adversarial attack on a cascaded multi-modal deep learning network (DNN)
We show that the proposed universal multi-modal attack was successful in reducing the model's ability to detect a car by nearly 73%.
arXiv Detail & Related papers (2021-01-26T12:40:34Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion
Forecasting with a Single Convolutional Net [93.51773847125014]
We propose a novel deep neural network that is able to jointly reason about 3D detection, tracking and motion forecasting given data captured by a 3D sensor.
Our approach performs 3D convolutions across space and time over a bird's eye view representation of the 3D world.
arXiv Detail & Related papers (2020-12-22T22:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.