AdvIRL: Reinforcement Learning-Based Adversarial Attacks on 3D NeRF Models
- URL: http://arxiv.org/abs/2412.16213v1
- Date: Wed, 18 Dec 2024 01:01:30 GMT
- Title: AdvIRL: Reinforcement Learning-Based Adversarial Attacks on 3D NeRF Models
- Authors: Tommy Nguyen, Mehmet Ergezer, Christian Green,
- Abstract summary: textitAdvIRL generates adversarial noise that remains robust under diverse 3D transformations.
Our approach is validated across a wide range of scenes, from small objects (e.g., bananas) to large environments (e.g., lighthouses)
- Score: 1.7205106391379021
- License:
- Abstract: The increasing deployment of AI models in critical applications has exposed them to significant risks from adversarial attacks. While adversarial vulnerabilities in 2D vision models have been extensively studied, the threat landscape for 3D generative models, such as Neural Radiance Fields (NeRF), remains underexplored. This work introduces \textit{AdvIRL}, a novel framework for crafting adversarial NeRF models using Instant Neural Graphics Primitives (Instant-NGP) and Reinforcement Learning. Unlike prior methods, \textit{AdvIRL} generates adversarial noise that remains robust under diverse 3D transformations, including rotations and scaling, enabling effective black-box attacks in real-world scenarios. Our approach is validated across a wide range of scenes, from small objects (e.g., bananas) to large environments (e.g., lighthouses). Notably, targeted attacks achieved high-confidence misclassifications, such as labeling a banana as a slug and a truck as a cannon, demonstrating the practical risks posed by adversarial NeRFs. Beyond attacking, \textit{AdvIRL}-generated adversarial models can serve as adversarial training data to enhance the robustness of vision systems. The implementation of \textit{AdvIRL} is publicly available at \url{https://github.com/Tommy-Nguyen-cpu/AdvIRL/tree/MultiView-Clean}, ensuring reproducibility and facilitating future research.
Related papers
- Quaternion-Hadamard Network: A Novel Defense Against Adversarial Attacks with a New Dataset [0.0]
This paper addresses the vulnerability of deep-learning models designed for rain, snow, and haze removal in adverse weather.
We propose a model-agnostic defense against first-order white-box adversarial attacks using the Quaternion-Hadamard Network (QHNet)
QHNet incorporates these blocks within an encoder-decoder architecture, enhanced by feature refinement, to effectively neutralize adversarial noise.
arXiv Detail & Related papers (2025-02-12T00:13:40Z) - Hard-Label Black-Box Attacks on 3D Point Clouds [66.52447238776482]
We introduce a novel 3D attack method based on a new spectrum-aware decision boundary algorithm to generate high-quality adversarial samples.
Experiments demonstrate that our attack competitively outperforms existing white/black-box attackers in terms of attack performance and adversary quality.
arXiv Detail & Related papers (2024-11-30T09:05:02Z) - An Analysis of Recent Advances in Deepfake Image Detection in an Evolving Threat Landscape [11.45988746286973]
Deepfake or synthetic images produced using deep generative models pose serious risks to online platforms.
We study 8 state-of-the-art detectors and argue that they are far from being ready for deployment.
arXiv Detail & Related papers (2024-04-24T21:21:50Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Targeted Adversarial Attacks on Generalizable Neural Radiance Fields [0.0]
We present how generalizable NeRFs can be attacked by both low-intensity adversarial attacks and adversarial patches.
We also demonstrate targeted attacks, where a specific, predefined output scene is generated by these attacks with success.
arXiv Detail & Related papers (2023-10-05T14:59:18Z) - Shielding the Unseen: Privacy Protection through Poisoning NeRF with
Spatial Deformation [59.302770084115814]
We introduce an innovative method of safeguarding user privacy against the generative capabilities of Neural Radiance Fields (NeRF) models.
Our novel poisoning attack method induces changes to observed views that are imperceptible to the human eye, yet potent enough to disrupt NeRF's ability to accurately reconstruct a 3D scene.
We extensively test our approach on two common NeRF benchmark datasets consisting of 29 real-world scenes with high-quality images.
arXiv Detail & Related papers (2023-10-04T19:35:56Z) - Adaptive Local Adversarial Attacks on 3D Point Clouds for Augmented
Reality [10.118505317224683]
Adversarial examples are beneficial to improve the robustness of the 3D neural network model.
Most 3D adversarial attack methods perturb the entire point cloud to generate adversarial examples.
We propose an adaptive local adversarial attack method (AL-Adv) on 3D point clouds to generate adversarial point clouds.
arXiv Detail & Related papers (2023-03-12T11:52:02Z) - Ada3Diff: Defending against 3D Adversarial Point Clouds via Adaptive
Diffusion [70.60038549155485]
Deep 3D point cloud models are sensitive to adversarial attacks, which poses threats to safety-critical applications such as autonomous driving.
This paper introduces a novel distortion-aware defense framework that can rebuild the pristine data distribution with a tailored intensity estimator and a diffusion model.
arXiv Detail & Related papers (2022-11-29T14:32:43Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - Generating Unrestricted 3D Adversarial Point Clouds [9.685291478330054]
deep learning for 3D point clouds is still vulnerable to adversarial attacks.
We propose an Adversarial Graph-Convolutional Generative Adversarial Network (AdvGCGAN) to generate realistic adversarial 3D point clouds.
arXiv Detail & Related papers (2021-11-17T08:30:18Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
Deep learning models are notoriously sensitive to adversarial examples which are synthesized by adding quasi-perceptible noises on real images.
We propose a portable defense method, online alternate generator, which does not need to access or modify the parameters of the target networks.
The proposed method works by online synthesizing another image from scratch for an input image, instead of removing or destroying adversarial noises.
arXiv Detail & Related papers (2020-09-17T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.