論文の概要: Understanding Video Scenes through Text: Insights from Text-based Video
Question Answering
- arxiv url: http://arxiv.org/abs/2309.01380v2
- Date: Mon, 11 Sep 2023 07:01:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 18:29:48.430646
- Title: Understanding Video Scenes through Text: Insights from Text-based Video
Question Answering
- Title(参考訳): テキストによる映像シーンの理解:テキストによるビデオ質問回答から
- Authors: Soumya Jahagirdar, Minesh Mathew, Dimosthenis Karatzas, C. V. Jawahar
- Abstract要約: 本稿では,最近導入された2つのデータセットであるNewsVideoQAとM4-ViteVQAについて検討する。
本稿では,これらのデータセットの様々なレベルでの定式化の分析を行い,その解答に必要な視覚的理解度と多フレーム理解度について検討する。
- 参考スコア(独自算出の注目度): 40.01623654896573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Researchers have extensively studied the field of vision and language,
discovering that both visual and textual content is crucial for understanding
scenes effectively. Particularly, comprehending text in videos holds great
significance, requiring both scene text understanding and temporal reasoning.
This paper focuses on exploring two recently introduced datasets, NewsVideoQA
and M4-ViteVQA, which aim to address video question answering based on textual
content. The NewsVideoQA dataset contains question-answer pairs related to the
text in news videos, while M4-ViteVQA comprises question-answer pairs from
diverse categories like vlogging, traveling, and shopping. We provide an
analysis of the formulation of these datasets on various levels, exploring the
degree of visual understanding and multi-frame comprehension required for
answering the questions. Additionally, the study includes experimentation with
BERT-QA, a text-only model, which demonstrates comparable performance to the
original methods on both datasets, indicating the shortcomings in the
formulation of these datasets. Furthermore, we also look into the domain
adaptation aspect by examining the effectiveness of training on M4-ViteVQA and
evaluating on NewsVideoQA and vice-versa, thereby shedding light on the
challenges and potential benefits of out-of-domain training.
- Abstract(参考訳): 研究者は視覚と言語分野を幅広く研究し、視覚とテキストの両方がシーンを効果的に理解するために重要であることを発見した。
特にビデオにおけるテキストの理解は重要な意味を持ち、シーンテキストの理解と時間的推論の両方を必要とする。
本稿では,最近導入された2つのデータセットであるNewsVideoQAとM4-ViteVQAについて検討する。
NewsVideoQAデータセットには、ニュースビデオのテキストに関連する質問応答ペアが含まれており、M4-ViteVQAには、ブログ、旅行、ショッピングといったさまざまなカテゴリの質問応答ペアが含まれている。
様々なレベルでこれらのデータセットの定式化の分析を行い、質問に答えるために必要な視覚的理解とマルチフレーム理解の度合いについて検討する。
さらに、この研究は、テキストのみのモデルであるBERT-QAの実験を含む。これは、両方のデータセットのオリジナルのメソッドと同等のパフォーマンスを示し、これらのデータセットの定式化における欠点を示している。
さらに,m4-vitevqaのトレーニングの有効性を検証し,newsvideoqaとvice-versaの評価を行い,ドメイン外トレーニングの課題と潜在的なメリットを明らかにした。
関連論文リスト
- Making the V in Text-VQA Matter [1.2962828085662563]
テキストベースのVQAは,画像中のテキストを読み取って質問に答えることを目的としている。
近年の研究では、データセットの問合せ対は、画像に存在するテキストにより焦点を絞っていることが示されている。
このデータセットでトレーニングされたモデルは、視覚的コンテキストの理解の欠如による偏りのある回答を予測する。
論文 参考訳(メタデータ) (2023-08-01T05:28:13Z) - A Large Cross-Modal Video Retrieval Dataset with Reading Comprehension [49.74647080936875]
テキスト読解機能を備えた大規模・クロスモーダルなビデオ検索データセットであるTextVRを紹介した。
提案したTextVRでは,テキストを認識し,理解し,視覚的コンテキストに関連づけ,ビデオ検索作業に不可欠なテキスト意味情報を決定するために,一種類のクロスモーダルモデルが必要である。
論文 参考訳(メタデータ) (2023-05-05T08:00:14Z) - Deep Learning for Video-Text Retrieval: a Review [13.341694455581363]
Video-Text Retrieval (VTR) は、ある文のセマンティクスに関連する最も関連性の高いビデオを探すことを目的としている。
本稿では,VTRに関する100以上の研究論文をレビューし,要約する。
論文 参考訳(メタデータ) (2023-02-24T10:14:35Z) - Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval? [131.300931102986]
現実のシナリオでは、オンラインビデオにはタイトルやタグ、サブタイトルなど、関連するテキスト情報が添付されることが多い。
そこで本研究では,ゼロショットビデオキャプションを用いて動画から関連キャプションを直接生成する手法を提案する。
我々は,我々のアプローチの有効性を実証する包括的アブレーション研究を行っている。
論文 参考訳(メタデータ) (2022-12-31T11:50:32Z) - Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense [98.70218717851665]
モデルが、限られた評価データ資源のために、視覚的シーンと基礎となるコモンセンス知識を本当に理解しているかどうかは不明だ。
本稿では,視覚シーン,テキスト,関連知識に対するモデルの理解をテストするために,質問応答ペアを自動的に生成するマルチモーダル評価(ME)パイプラインを提案する。
次に、MEデータによるトレーニングが標準VCR評価におけるモデルの性能を高めることを示すために、さらに一歩踏み出します。
論文 参考訳(メタデータ) (2022-11-10T21:44:33Z) - TAG: Boosting Text-VQA via Text-aware Visual Question-answer Generation [55.83319599681002]
Text-VQAは、画像中のテキストの手がかりを理解する必要がある質問に答えることを目的としている。
画像のシーンコンテキストで利用可能な既存のリッチテキストを明示的に利用することにより,高品質で多様なQAペアを生成する方法を開発した。
論文 参考訳(メタデータ) (2022-08-03T02:18:09Z) - Structured Two-stream Attention Network for Video Question Answering [168.95603875458113]
本研究では,自由形式の自然言語やオープンな自然言語の疑問に答えるために,構造化された2ストリーム注意ネットワーク,すなわちSTAを提案する。
まず、構造化セグメントコンポーネントを用いてビデオ中にリッチな長距離時間構造を推定し、テキスト特徴を符号化する。
そして、構造化された2ストリームアテンションコンポーネントは、重要な視覚的インスタンスを同時にローカライズし、背景映像の影響を低減し、関連するテキストに焦点を当てる。
論文 参考訳(メタデータ) (2022-06-02T12:25:52Z) - Bridging Vision and Language from the Video-to-Text Perspective: A
Comprehensive Review [1.0520692160489133]
本稿では,ビデオ・トゥ・テキスト問題に対する最先端技術の分類と解説を行う。
主なvideo-to-textメソッドとそのパフォーマンス評価方法をカバーする。
最先端の技術は、ビデオ記述の生成または取得における人間のようなパフォーマンスを達成するには、まだ長い道のりです。
論文 参考訳(メタデータ) (2021-03-27T02:12:28Z) - Multimodal grid features and cell pointers for Scene Text Visual
Question Answering [7.834170106487722]
本稿では,シーンテキストによる視覚的質問応答のタスクのための新しいモデルを提案する。
問題に適応したマルチモーダルな特徴に対応するアテンションメカニズムに基づいている。
実験では、2つの標準データセットで競合性能を示す。
論文 参考訳(メタデータ) (2020-06-01T13:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。