論文の概要: Bridging the Projection Gap: Overcoming Projection Bias Through Parameterized Distance Learning
- arxiv url: http://arxiv.org/abs/2309.01390v2
- Date: Tue, 2 Apr 2024 05:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 13:12:17.167678
- Title: Bridging the Projection Gap: Overcoming Projection Bias Through Parameterized Distance Learning
- Title(参考訳): 射影ギャップのブリッジ:パラメータ化された距離学習による射影バイアスの克服
- Authors: Chong Zhang, Mingyu Jin, Qinkai Yu, Haochen Xue, Shreyank N Gowda, Xiaobo Jin,
- Abstract要約: Generalized Zero-shot Learning (GZSL) は、見知らぬクラスと見えないクラスの両方からのサンプルを、学習用のクラスサンプルのみを使用して認識することを目的としている。
GZSL法は、投射関数が観測クラスから学習されるため、推論中に観測クラスに偏りが生じる傾向にある。
我々はこの予測バイアスに,ロバスト推論のためのパラメータ化されたマハラノビス距離測定値の学習を提案して対処する。
- 参考スコア(独自算出の注目度): 9.26015904497319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized zero-shot learning (GZSL) aims to recognize samples from both seen and unseen classes using only seen class samples for training. However, GZSL methods are prone to bias towards seen classes during inference due to the projection function being learned from seen classes. Most methods focus on learning an accurate projection, but bias in the projection is inevitable. We address this projection bias by proposing to learn a parameterized Mahalanobis distance metric for robust inference. Our key insight is that the distance computation during inference is critical, even with a biased projection. We make two main contributions - (1) We extend the VAEGAN (Variational Autoencoder \& Generative Adversarial Networks) architecture with two branches to separately output the projection of samples from seen and unseen classes, enabling more robust distance learning. (2) We introduce a novel loss function to optimize the Mahalanobis distance representation and reduce projection bias. Extensive experiments on four datasets show that our approach outperforms state-of-the-art GZSL techniques with improvements of up to 3.5 \% on the harmonic mean metric.
- Abstract(参考訳): Generalized Zero-shot Learning (GZSL) は、見知らぬクラスと見えないクラスの両方からのサンプルを、学習用のクラスサンプルのみを使用して認識することを目的としている。
しかし, GZSL法は, 投射関数が授業から学習されるため, 推論中にクラスに偏りが生じる傾向にある。
ほとんどの方法は正確なプロジェクションの学習に重点を置いているが、プロジェクションのバイアスは避けられない。
我々はこの予測バイアスに,ロバスト推論のためのパラメータ化されたマハラノビス距離測定値の学習を提案して対処する。
我々の重要な洞察は、偏りのある射影であっても、推論中の距離計算が重要であるということである。
1)VAEGANアーキテクチャを2つのブランチで拡張し、見知らぬクラスと見えないクラスからサンプルのプロジェクションを別々に出力し、より堅牢な距離学習を可能にします。
2) マハラノビス距離の表現を最適化し,投射バイアスを低減する新しい損失関数を提案する。
4つのデータセットに対する大規模な実験により、我々のアプローチは、高調波平均測定値で最大3.5 \%の改善で最先端のGZSL技術より優れていることが示された。
関連論文リスト
- SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
SIGMA (Sinkhorn-guided Masked Video Modelling) は、新しいビデオ事前学習法である。
時空管の特徴を,限られた数の学習可能なクラスタに均等に分散する。
10個のデータセットによる実験結果から,より高性能で時間的,堅牢な映像表現を学習する上で,SIGMAの有効性が検証された。
論文 参考訳(メタデータ) (2024-07-22T08:04:09Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - Revealing the Proximate Long-Tail Distribution in Compositional
Zero-Shot Learning [20.837664254230567]
合成ゼロショット学習(CZSL)は、目に見える状態オブジェクト対から新しいペアへ知識を伝達することを目的としている。
状態オブジェクトの組み合わせの予測によって引き起こされる視覚バイアスは、識別可能なクラスプロトタイプの学習を妨げる視覚的特徴を曖昧にする。
CZSLの長尾分布におけるクラスの役割を数学的に推定する。
この知見に基づいて, 合成による視覚的偏見を分類器の訓練と推定に組み入れ, 事前の近似クラスとして推定する。
論文 参考訳(メタデータ) (2023-12-26T07:35:02Z) - Prompt Tuning Pushes Farther, Contrastive Learning Pulls Closer: A
Two-Stage Approach to Mitigate Social Biases [13.837927115198308]
本稿では,コントラスト学習と連続的プロンプト拡張を用いた逆トレーニングによる2段階脱バイアスモデルを提案する。
我々のアプローチは、トレーニングプロセスに困難を加えることで、より強固なデバイアス性能を達成するためのモデルを導出します。
論文 参考訳(メタデータ) (2023-07-04T09:35:03Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z) - Towards Unbiased Label Distribution Learning for Facial Pose Estimation
Using Anisotropic Spherical Gaussian [8.597165738132617]
Anisotropic Spherical Gaussian (ASG)-based LDL approach for face pose Estimationを提案する。
特に、我々のアプローチでは、不偏期待を常に生成する単位球面上の球面ガウス分布を採用する。
提案手法は, AFLW2000 と BIWI のデータセットに新たな最先端記録を設定する。
論文 参考訳(メタデータ) (2022-08-19T02:12:36Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
汎用ゼロショット学習(GZSL)は,補助情報のみを用いることで,見つからないクラスデータに一般化できるモデルを訓練することを目的とする。
GZSLの主な課題の1つは、トレーニング中に利用可能なクラスデータのみに過度に適合することに起因する、見かけたクラスに対するバイアス付きモデル予測である。
GZSLのための2ストリームオートエンコーダに基づくゲーティングモデルを提案する。
論文 参考訳(メタデータ) (2022-03-08T16:41:06Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
本稿では、サンプルビューとクラスビューの両方でコントラスト損失を構築する新しい二重コントラストディープクラスタリング(DCDC)フレームワークを紹介します。
具体的には、サンプルビューに対して、元のサンプルとその拡張バージョンのクラス分布を正のサンプルペアとして設定する。
クラスビューでは、クラスのサンプル分布から正のペアと負のペアを構築します。
このように、2つのコントラスト損失は、サンプルとクラスレベルでのミニバッチサンプルのクラスタリング結果をうまく制限します。
論文 参考訳(メタデータ) (2021-03-09T15:15:32Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
一般化ゼロショット学習(GZSL)の目的は、目に見えないクラスと見えないクラスの両方を認識することである。
ほとんどのGZSLメソッドは、通常、見えないクラスの意味情報から視覚表現を合成することを学ぶ。
本論文では,三重項損失を持つ2重変分オートエンコーダを利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-09T05:21:27Z) - Information Bottleneck Constrained Latent Bidirectional Embedding for
Zero-Shot Learning [59.58381904522967]
本稿では,密な視覚-意味的結合制約を持つ埋め込み型生成モデルを提案する。
視覚空間と意味空間の両方の埋め込みパラメトリック分布を校正する統合潜在空間を学習する。
本手法は, 画像のラベルを生成することにより, トランスダクティブZSL設定に容易に拡張できる。
論文 参考訳(メタデータ) (2020-09-16T03:54:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。