Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity
- URL: http://arxiv.org/abs/2309.01424v1
- Date: Mon, 4 Sep 2023 08:15:15 GMT
- Title: Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity
- Authors: Nour Abdelmoneim, Dattaraj B. Dhuri, Dimitra Atri, Germ\'an Mart\'inez
- Abstract summary: We propose a novel approach to Martian climate modeling by leveraging machine learning techniques.
Our study presents a deep neural network designed to accurately model relative humidity in Gale Crater.
We find that our neural network can effectively model relative humidity at Gale crater using a few meteorological variables.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the past several decades, numerous attempts have been made to model the
climate of Mars with extensive studies focusing on the planet's dynamics and
the understanding of its climate. While physical modeling and data assimilation
approaches have made significant progress, uncertainties persist in
comprehensively capturing and modeling the complexities of Martian climate. In
this work, we propose a novel approach to Martian climate modeling by
leveraging machine learning techniques that have shown remarkable success in
Earth climate modeling. Our study presents a deep neural network designed to
accurately model relative humidity in Gale Crater, as measured by NASA's Mars
Science Laboratory ``Curiosity'' rover. By utilizing simulated meteorological
variables produced by the Mars Planetary Climate Model, a robust Global
Circulation Model, our model accurately predicts relative humidity with a mean
error of 3\% and an $R^2$ score of 0.92. Furthermore, we present an approach to
predict quantile ranges of relative humidity, catering to applications that
require a range of values. To address the challenge of interpretability
associated with machine learning models, we utilize an interpretable model
architecture and conduct an in-depth analysis of its internal mechanisms and
decision making processes. We find that our neural network can effectively
model relative humidity at Gale crater using a few meteorological variables,
with the monthly mean surface H$_2$O layer, planetary boundary layer height,
convective wind speed, and solar zenith angle being the primary contributors to
the model predictions. In addition to providing a fast and efficient method to
modeling climate variables on Mars, this modeling approach can also be used to
expand on current datasets by filling spatial and temporal gaps in
observations.
Related papers
- Modeling chaotic Lorenz ODE System using Scientific Machine Learning [1.4633779950109127]
In this paper, we have integrated Scientific Machine Learning (SciML) methods into foundational weather models.
By combining the interpretability of physical climate models with the computational power of neural networks, SciML models can prove to be a reliable tool for modeling climate.
arXiv Detail & Related papers (2024-10-09T01:17:06Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Embedding machine-learnt sub-grid variability improves climate model biases [0.44998333629984877]
Under-representation of cloud formation is a long-standing bias associated with climate simulations.
We overcome these biases by embedding a Multi-Output Gaussian Process (MOGP) trained on high resolution Unified Model simulations.
Ten-year predictions are generated for both control and ML-hybrid models.
arXiv Detail & Related papers (2024-06-13T19:35:58Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Towards Learned Emulation of Interannual Water Isotopologue Variations
in General Circulation Models [2.161227459325287]
We investigate the possibility to replace the explicit physics-based simulation of oxygen isotopic composition in precipitation using machine learning methods.
We implement convolutional neural networks (CNNs) based on the successful UNet architecture and test whether a spherical network architecture outperforms the naive approach of treating Earth's latitude-longitude grid as a flat image.
arXiv Detail & Related papers (2023-01-31T07:54:52Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Physics-Guided Generative Adversarial Networks for Sea Subsurface
Temperature Prediction [24.55780949103687]
Sea subsurface temperature is affected by global warming in climate change.
Existing research is commonly based on either physics-based numerical models or data based models.
We propose a novel framework based on generative adversarial network (GAN) combined with numerical model to predict sea subsurface temperature.
arXiv Detail & Related papers (2021-11-04T23:46:51Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.