Physics-Guided Generative Adversarial Networks for Sea Subsurface
Temperature Prediction
- URL: http://arxiv.org/abs/2111.03064v1
- Date: Thu, 4 Nov 2021 23:46:51 GMT
- Title: Physics-Guided Generative Adversarial Networks for Sea Subsurface
Temperature Prediction
- Authors: Yuxin Meng, Eric Rigall, Xueen Chen, Feng Gao, Junyu Dong, Sheng Chen
- Abstract summary: Sea subsurface temperature is affected by global warming in climate change.
Existing research is commonly based on either physics-based numerical models or data based models.
We propose a novel framework based on generative adversarial network (GAN) combined with numerical model to predict sea subsurface temperature.
- Score: 24.55780949103687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sea subsurface temperature, an essential component of aquatic wildlife,
underwater dynamics and heat transfer with the sea surface, is affected by
global warming in climate change. Existing research is commonly based on either
physics-based numerical models or data based models. Physical modeling and
machine learning are traditionally considered as two unrelated fields for the
sea subsurface temperature prediction task, with very different scientific
paradigms (physics-driven and data-driven). However, we believe both methods
are complementary to each other. Physical modeling methods can offer the
potential for extrapolation beyond observational conditions, while data-driven
methods are flexible in adapting to data and are capable of detecting
unexpected patterns. The combination of both approaches is very attractive and
offers potential performance improvement. In this paper, we propose a novel
framework based on generative adversarial network (GAN) combined with numerical
model to predict sea subsurface temperature. First, a GAN-based model is used
to learn the simplified physics between the surface temperature and the target
subsurface temperature in numerical model. Then, observation data are used to
calibrate the GAN-based model parameters to obtain better prediction. We
evaluate the proposed framework by predicting daily sea subsurface temperature
in the South China sea. Extensive experiments demonstrate the effectiveness of
the proposed framework compared to existing state-of-the-art methods.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean
Models [2.956865819041394]
Ocean processes affect phenomena such as hurricanes and droughts.
For an idealized ocean model, we generated perturbed parameter ensemble data and trained surrogate neural network models.
The neural surrogates accurately predicted the one-step forward dynamics, of which we then computed the parametric sensitivity.
arXiv Detail & Related papers (2023-11-10T16:37:43Z) - Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity [0.0]
We propose a novel approach to Martian climate modeling by leveraging machine learning techniques.
Our study presents a deep neural network designed to accurately model relative humidity in Gale Crater.
We find that our neural network can effectively model relative humidity at Gale crater using a few meteorological variables.
arXiv Detail & Related papers (2023-09-04T08:15:15Z) - Physical Knowledge Enhanced Deep Neural Network for Sea Surface
Temperature Prediction [29.989387641655625]
We introduce a method for Sea Surface Temperature (SST) prediction that transfers physical knowledge from historical observations to numerical models.
Specifically, we use a combination of an encoder and a generative adversarial network (GAN) to capture physical knowledge from the observed data.
The numerical model data is then fed into the pre-trained model to generate physics-enhanced data, which can then be used for SST prediction.
arXiv Detail & Related papers (2023-04-19T02:08:54Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Physics-constrained deep learning postprocessing of temperature and
humidity [0.0]
We propose to achieve physical consistency in deep learning-based postprocessing models.
We find that constraining a neural network to enforce thermodynamic state equations yields physically-consistent predictions.
arXiv Detail & Related papers (2022-12-07T09:31:25Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - A Deep Learning Model for Forecasting Global Monthly Mean Sea Surface
Temperature Anomalies [2.8411302762015844]
We have developed a deep learning time series prediction model (Unet-LSTM) based on more than 70 years (1950-2021) of ECMWF ERA5 monthly mean sea surface temperature and 2-metre air temperature data.
The model accurately predicts sea surface temperatures over a 24 month period with a root mean square error remaining below 0.75$circ$C for all predicted months.
We have also investigated the ability of the model to predict sea surface temperature anomalies in the Nino3.4 region, as well as a number of marine heatwave hot spots over the past decade.
arXiv Detail & Related papers (2022-02-21T03:11:27Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.