Open Sesame! Universal Black Box Jailbreaking of Large Language Models
- URL: http://arxiv.org/abs/2309.01446v4
- Date: Mon, 5 Aug 2024 11:34:10 GMT
- Title: Open Sesame! Universal Black Box Jailbreaking of Large Language Models
- Authors: Raz Lapid, Ron Langberg, Moshe Sipper,
- Abstract summary: Large language models (LLMs) are designed to provide helpful and safe responses.
LLMs often rely on alignment techniques to align with user intent and social guidelines.
We introduce a novel approach that employs a genetic algorithm (GA) to manipulate LLMs when model architecture and parameters are inaccessible.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs), designed to provide helpful and safe responses, often rely on alignment techniques to align with user intent and social guidelines. Unfortunately, this alignment can be exploited by malicious actors seeking to manipulate an LLM's outputs for unintended purposes. In this paper we introduce a novel approach that employs a genetic algorithm (GA) to manipulate LLMs when model architecture and parameters are inaccessible. The GA attack works by optimizing a universal adversarial prompt that -- when combined with a user's query -- disrupts the attacked model's alignment, resulting in unintended and potentially harmful outputs. Our novel approach systematically reveals a model's limitations and vulnerabilities by uncovering instances where its responses deviate from expected behavior. Through extensive experiments we demonstrate the efficacy of our technique, thus contributing to the ongoing discussion on responsible AI development by providing a diagnostic tool for evaluating and enhancing alignment of LLMs with human intent. To our knowledge this is the first automated universal black box jailbreak attack.
Related papers
- Automated Red Teaming with GOAT: the Generative Offensive Agent Tester [8.947465706080523]
Red teaming assesses how large language models can produce content that violates norms, policies, and rules set during their safety training.
Most existing automated methods in the literature are not representative of the way humans tend to interact with AI models.
We introduce Generative Offensive Agent Tester (GOAT), an automated agentic red teaming system that simulates plain language adversarial conversations.
arXiv Detail & Related papers (2024-10-02T14:47:05Z) - Detecting AI Flaws: Target-Driven Attacks on Internal Faults in Language Models [27.397408870544453]
Large Language Models (LLMs) have become a focal point in the rapidly evolving field of artificial intelligence.
A critical concern is the presence of toxic content within the pre-training corpus of these models, which can lead to the generation of inappropriate outputs.
This paper proposes a target-driven attack paradigm that focuses on directly eliciting the target response instead of optimizing the prompts.
arXiv Detail & Related papers (2024-08-27T08:12:08Z) - MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
Large language models (LLMs) have demonstrated remarkable capabilities.
Their powerful generative abilities enable flexible responses based on various queries or instructions.
This paper proposes an editing-based generative backdoor, named MEGen, aiming to create a customized backdoor for NLP tasks with the least side effects.
arXiv Detail & Related papers (2024-08-20T10:44:29Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks.
Recent studies suggest that defending against these attacks is possible: adversarial attacks generate unlimited but unreadable gibberish prompts, detectable by perplexity-based filters.
We introduce AutoDAN, an interpretable, gradient-based adversarial attack that merges the strengths of both attack types.
arXiv Detail & Related papers (2023-10-23T17:46:07Z) - Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation [39.829517061574364]
Even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks"
We propose the generation exploitation attack, which disrupts model alignment by only manipulating variations of decoding methods.
Our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs.
arXiv Detail & Related papers (2023-10-10T20:15:54Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
We introduce AutoDAN, a novel jailbreak attack against aligned Large Language Models.
AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.
arXiv Detail & Related papers (2023-10-03T19:44:37Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
We propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors.
Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable.
arXiv Detail & Related papers (2023-07-27T17:49:12Z) - Fundamental Limitations of Alignment in Large Language Models [16.393916864600193]
An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful.
This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones.
We propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models.
arXiv Detail & Related papers (2023-04-19T17:50:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.