Fundamental Limitations of Alignment in Large Language Models
- URL: http://arxiv.org/abs/2304.11082v6
- Date: Mon, 3 Jun 2024 12:19:16 GMT
- Title: Fundamental Limitations of Alignment in Large Language Models
- Authors: Yotam Wolf, Noam Wies, Oshri Avnery, Yoav Levine, Amnon Shashua,
- Abstract summary: An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful.
This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones.
We propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models.
- Score: 16.393916864600193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that within the limits of this framework, for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates an undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback make the LLM prone to being prompted into the undesired behaviors. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick the LLM into breaking its alignment guardrails by triggering it into acting as a malicious persona. Our results expose fundamental limitations in alignment of LLMs and bring to the forefront the need to devise reliable mechanisms for ensuring AI safety.
Related papers
- BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - DeAL: Decoding-time Alignment for Large Language Models [59.63643988872571]
Large Language Models (LLMs) are nowadays expected to generate content aligned with human preferences.
We propose DeAL, a framework that allows the user to customize reward functions and enables Detime Alignment of LLMs.
Our experiments show that we can DeAL with fine-grained trade-offs, improve adherence to alignment objectives, and address residual gaps in LLMs.
arXiv Detail & Related papers (2024-02-05T06:12:29Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
We leverage the zero-shot capabilities of large language models to reduce stereotyping.
We show that self-debiasing can significantly reduce the degree of stereotyping across nine different social groups.
We hope this work opens inquiry into other zero-shot techniques for bias mitigation.
arXiv Detail & Related papers (2024-02-03T01:40:11Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections [17.49244337226907]
We show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections.
Our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.
arXiv Detail & Related papers (2023-11-15T23:52:05Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges.
Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs.
This study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them.
arXiv Detail & Related papers (2023-10-16T14:59:10Z) - Open Sesame! Universal Black Box Jailbreaking of Large Language Models [0.0]
Large language models (LLMs) are designed to provide helpful and safe responses.
LLMs often rely on alignment techniques to align with user intent and social guidelines.
We introduce a novel approach that employs a genetic algorithm (GA) to manipulate LLMs when model architecture and parameters are inaccessible.
arXiv Detail & Related papers (2023-09-04T08:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.