論文の概要: Dropout Attacks
- arxiv url: http://arxiv.org/abs/2309.01614v1
- Date: Mon, 4 Sep 2023 13:55:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 18:20:35.375139
- Title: Dropout Attacks
- Title(参考訳): ドロップアウト攻撃
- Authors: Andrew Yuan, Alina Oprea, Cheng Tan
- Abstract要約: ドロップアウトはディープラーニングにおいて一般的なオペレータであり、トレーニング中にランダムにニューロンをドロップすることで過度な適合を防止することを目的としている。
我々は,DROPOUTATTACKと呼ばれるニューラルネットワークに対する新たな中毒攻撃群を紹介する。
これらの攻撃は訓練を遅らせたり止めたり、ターゲットクラスの予測精度を破壊したり、ターゲットクラスの精度やリコールを妨害したりする。
- 参考スコア(独自算出の注目度): 9.460944340689323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dropout is a common operator in deep learning, aiming to prevent overfitting
by randomly dropping neurons during training. This paper introduces a new
family of poisoning attacks against neural networks named DROPOUTATTACK.
DROPOUTATTACK attacks the dropout operator by manipulating the selection of
neurons to drop instead of selecting them uniformly at random. We design,
implement, and evaluate four DROPOUTATTACK variants that cover a broad range of
scenarios. These attacks can slow or stop training, destroy prediction accuracy
of target classes, and sabotage either precision or recall of a target class.
In our experiments of training a VGG-16 model on CIFAR-100, our attack can
reduce the precision of the victim class by 34.6% (from 81.7% to 47.1%) without
incurring any degradation in model accuracy
- Abstract(参考訳): dropoutはディープラーニングの一般的なオペレータであり、トレーニング中にランダムにニューロンを落として過剰フィッティングを防止することを目的としている。
本稿では, DROPOUTATTACK と呼ばれるニューラルネットワークに対する新たな中毒攻撃群を紹介する。
DROPOUTATTACKは、ランダムに選択するのではなく、ドロップアウトするニューロンの選択を操作することで、ドロップアウトオペレータを攻撃します。
私たちは、幅広いシナリオをカバーする4つのdropoutattack変種を設計し、実装し、評価します。
これらの攻撃は訓練を遅らせたり止めたり、ターゲットクラスの予測精度を破壊したり、ターゲットクラスの精度やリコールを妨害したりする。
CIFAR-100上でのVGG-16モデルのトレーニング実験では、モデル精度の劣化を招くことなく、犠牲者のクラスを34.6%(81.7%から47.1%)削減できる。
関連論文リスト
- Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks [11.390175856652856]
クリーンラベル攻撃は、毒性のあるデータのラベルを変更することなく攻撃を行うことができる、よりステルスなバックドア攻撃である。
本研究は,攻撃成功率を高めるために,標的クラス内の少数の訓練サンプルを選択的に毒殺する方法について検討した。
私たちの脅威モデルは、サードパーティのデータセットで機械学習モデルをトレーニングする上で深刻な脅威となる。
論文 参考訳(メタデータ) (2024-07-15T15:38:21Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models [1.2499537119440245]
モノのインターネット(IoT)における32ビットマイクロコントローラの組み込みディープニューラルネットワークモデルに焦点をあてる。
攻撃を成功させるためのブラックボックス手法を提案する。
古典的畳み込みニューラルネットワークでは、1500個の入力で最も重要なビットの少なくとも90%を回復することに成功した。
論文 参考訳(メタデータ) (2023-08-31T13:09:33Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
既存のモデル盗難防衛は、被害者の後部確率に偽りの摂動を加え、攻撃者を誤解させる。
本稿では,モデルステルス防衛のための新規かつ効果的なトレーニングフレームワークである分離誘導(InI)を提案する。
モデルの精度を損なうモデル予測に摂動を加えるのとは対照的に、我々はモデルを訓練して、盗むクエリに対して非形式的なアウトプットを生成する。
論文 参考訳(メタデータ) (2023-08-02T05:54:01Z) - Few-shot Backdoor Attacks via Neural Tangent Kernels [31.85706783674533]
バックドア攻撃では、攻撃者が破損した例をトレーニングセットに注入する。
これらの攻撃の中心は、攻撃の成功率と、注入された破損したトレーニング例の数との間のトレードオフである。
ニューラルネットワークカーネルを用いて、攻撃されたモデルのトレーニングダイナミクスを近似し、強力な毒のサンプルを自動的に学習する。
論文 参考訳(メタデータ) (2022-10-12T05:30:00Z) - Data-Efficient Backdoor Attacks [14.230326737098554]
ディープニューラルネットワークはバックドア攻撃に弱い。
本稿では,その選択による毒性データ効率の向上について定式化する。
同じ攻撃成功率は、有毒サンプル量のわずか47%から75%で達成できる。
論文 参考訳(メタデータ) (2022-04-22T09:52:22Z) - Few-shot Backdoor Defense Using Shapley Estimation [123.56934991060788]
我々は、深層ニューラルネットワークに対するバックドア攻撃を軽減するために、Shapley Pruningと呼ばれる新しいアプローチを開発した。
ShapPruningは、感染した数少ないニューロン(全ニューロンの1%以下)を特定し、モデルの構造と正確性を保護する。
様々な攻撃やタスクに対して,本手法の有効性とロバスト性を示す実験を行った。
論文 参考訳(メタデータ) (2021-12-30T02:27:03Z) - Attacking Adversarial Attacks as A Defense [40.8739589617252]
敵の攻撃は 知覚不能な摂動で ディープニューラルネットワークを騙す
逆向きに訓練されたモデルでは、小さなランダムノイズで逆向きの例を摂動することで、誤った予測を無効にすることができる。
我々はより効果的な防御的摂動を構築することで攻撃に対抗することを提案する。
論文 参考訳(メタデータ) (2021-06-09T09:31:10Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Concealed Data Poisoning Attacks on NLP Models [56.794857982509455]
逆攻撃はテスト時間入力の摂動によってNLPモデル予測を変化させる。
我々は,入力に所望のトリガーフレーズが存在する場合,相手がモデル予測を制御できる新しいデータ中毒攻撃を開発した。
論文 参考訳(メタデータ) (2020-10-23T17:47:06Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。