論文の概要: An Empirical Analysis for Zero-Shot Multi-Label Classification on
COVID-19 CT Scans and Uncurated Reports
- arxiv url: http://arxiv.org/abs/2309.01740v2
- Date: Wed, 6 Sep 2023 09:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 11:24:18.003809
- Title: An Empirical Analysis for Zero-Shot Multi-Label Classification on
COVID-19 CT Scans and Uncurated Reports
- Title(参考訳): 新型コロナウイルスctスキャンにおけるゼロショットマルチラベル分類の経験的解析と未確認報告
- Authors: Ethan Dack, Lorenzo Brigato, Matthew McMurray, Matthias Fontanellaz,
Thomas Frauenfelder, Hanno Hoppe, Aristomenis Exadaktylos, Thomas Geiser,
Manuela Funke-Chambour, Andreas Christe, Lukas Ebner, Stavroula Mougiakakou
- Abstract要約: パンデミックは、医学検査の増加により、放射線学の報告を含む、膨大な構造化されていないデータのリポジトリに繋がった。
新型コロナウイルスの自動診断に関するこれまでの研究は、CT(Computed tomography)スキャンと比較して精度が低いにもかかわらず、主にX線画像に焦点を当てていた。
本研究では,病院の非構造データを活用し,CTスキャンによって提供される細かな細部を利用して,対照的な視覚言語学習に基づくゼロショット多ラベル分類を行う。
- 参考スコア(独自算出の注目度): 0.5527944417831603
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The pandemic resulted in vast repositories of unstructured data, including
radiology reports, due to increased medical examinations. Previous research on
automated diagnosis of COVID-19 primarily focuses on X-ray images, despite
their lower precision compared to computed tomography (CT) scans. In this work,
we leverage unstructured data from a hospital and harness the fine-grained
details offered by CT scans to perform zero-shot multi-label classification
based on contrastive visual language learning. In collaboration with human
experts, we investigate the effectiveness of multiple zero-shot models that aid
radiologists in detecting pulmonary embolisms and identifying intricate lung
details like ground glass opacities and consolidations. Our empirical analysis
provides an overview of the possible solutions to target such fine-grained
tasks, so far overlooked in the medical multimodal pretraining literature. Our
investigation promises future advancements in the medical image analysis
community by addressing some challenges associated with unstructured data and
fine-grained multi-label classification.
- Abstract(参考訳): パンデミックは、医学検査の増加により、放射線学の報告を含む膨大な非構造データを蓄積した。
新型コロナウイルスの自動診断に関するこれまでの研究は、CT(Computed tomography)スキャンと比較して精度が低いにもかかわらず、主にX線画像に焦点を当てていた。
本研究では,病院の非構造化データを活用し,ctスキャンで提供される細かな詳細情報を活用して,コントラスト的視覚言語学習に基づくゼロショットマルチラベル分類を行う。
ヒトの専門家と共同で、放射線技師が肺塞栓症を検知し、地面ガラスの透明度や凝縮のような複雑な肺の詳細を特定するのに役立つ複数のゼロショットモデルの有効性について検討した。
これまでの医療用マルチモーダルプリトレーニング文献では見過ごされていた,このようなきめ細かなタスクを対象とする可能なソリューションの概要を実証的に分析した。
本研究は,非構造化データと細粒度マルチラベル分類に関連する課題に対処することで,医療画像解析コミュニティの今後の進歩を約束する。
関連論文リスト
- Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
本稿では、新型コロナウイルス患者の感染症領域を抽出するためのドメイン知識に基づくパイプラインを提案する。
感染の重症度は、3つの機械学習モデルのアンサンブルを使用して異なるカテゴリに分類される。
提案システムは,AI-Enabled Medical Image Analysis WorkshopとCOVID-19診断コンペティションの検証データセットを用いて評価した。
論文 参考訳(メタデータ) (2023-03-13T13:59:47Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
我々は、診断に関する情報がCNNに基づく画像分類モデルを改善する方法について分析する。
追加の患者履歴情報に基づいてトレーニングされたモデルが、情報のないトレーニングを受けたモデルよりも有意なマージンで優れていることを示す。
論文 参考訳(メタデータ) (2022-10-28T11:47:15Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
新型コロナウイルス(COVID-19)による肺のCT画像では、地上ガラスの濁度が専門的な診断を必要とする最も一般的な発見である。
一部の研究者は、専門知識の欠如による専門的診断専門医の代替となる、関連するDLモデルを提案する。
肺病変の分類では, 新型コロナウイルス, 肺炎, 正常の3種類で94.52%の精度が得られた。
論文 参考訳(メタデータ) (2022-08-04T22:14:18Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
本稿では,診断パイプラインにおける基礎的,しかし困難な課題である肺分節に対する新しい深層学習手法を提案する。
本手法では, 逆批判モデルとともに, 最先端の完全畳み込みニューラルネットワークを用いる。
これは、患者プロファイルの異なる未確認データセットのCXRイメージによく当てはまり、JSRTデータセットの最終的なDSCRは97.5%に達した。
論文 参考訳(メタデータ) (2020-03-23T14:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。