Benchmarking Autoregressive Conditional Diffusion Models for Turbulent
Flow Simulation
- URL: http://arxiv.org/abs/2309.01745v2
- Date: Mon, 29 Jan 2024 19:01:02 GMT
- Title: Benchmarking Autoregressive Conditional Diffusion Models for Turbulent
Flow Simulation
- Authors: Georg Kohl, Li-Wei Chen, Nils Thuerey
- Abstract summary: We analyze if fully data-driven fluid solvers that utilize an autoregressive rollout based on conditional diffusion models are a viable option.
We investigate accuracy, posterior sampling, spectral behavior, and temporal stability, while requiring that methods generalize to flow parameters beyond the training regime.
We find that even simple diffusion-based approaches can outperform multiple established flow prediction methods in terms of accuracy and temporal stability, while being on par with state-of-the-art stabilization techniques like unrolling at training time.
- Score: 29.806100463356906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating turbulent flows is crucial for a wide range of applications, and
machine learning-based solvers are gaining increasing relevance. However,
achieving temporal stability when generalizing to longer rollout horizons
remains a persistent challenge for learned PDE solvers. In this work, we
analyze if fully data-driven fluid solvers that utilize an autoregressive
rollout based on conditional diffusion models are a viable option to address
this challenge. We investigate accuracy, posterior sampling, spectral behavior,
and temporal stability, while requiring that methods generalize to flow
parameters beyond the training regime. To quantitatively and qualitatively
benchmark the performance of a range of flow prediction approaches, three
challenging scenarios including incompressible and transonic flows, as well as
isotropic turbulence are employed. We find that even simple diffusion-based
approaches can outperform multiple established flow prediction methods in terms
of accuracy and temporal stability, while being on par with state-of-the-art
stabilization techniques like unrolling at training time. Such traditional
architectures are superior in terms of inference speed, however, the
probabilistic nature of diffusion approaches allows for inferring multiple
predictions that align with the statistics of the underlying physics. Overall,
our benchmark contains three carefully chosen data sets that are suitable for
probabilistic evaluation alongside various established flow prediction
architectures.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
We argue that solving both problems within the same framework can lead to consistent gains in accuracy and robustness.
We present the capabilities of the proposed methodology for predicting continuous and discrete biomarkers in full-body haemodynamics simulations.
arXiv Detail & Related papers (2024-05-23T13:37:26Z) - Bayesian Conditional Diffusion Models for Versatile Spatiotemporal
Turbulence Generation [13.278744447861289]
We introduce a novel generative framework grounded in probabilistic diffusion models for turbulence generation.
A notable feature of our approach is the proposed method for long-span flow sequence generation, which is based on autoregressive-based conditional sampling.
We showcase the versatile turbulence generation capability of our framework through a suite of numerical experiments.
arXiv Detail & Related papers (2023-11-14T04:08:14Z) - DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal
Forecasting [18.86526240105348]
We propose an approach for efficiently training diffusion models for probabilistic forecasting.
We train a time-conditioned interpolator and a forecaster network that mimic the forward and reverse processes of standard diffusion models.
Our approach performs competitively on probabilistic forecasting of complex dynamics in sea surface temperatures, Navier-Stokes flows, and flows spring systems.
arXiv Detail & Related papers (2023-06-03T02:46:31Z) - Flow Matching for Scalable Simulation-Based Inference [20.182658224439688]
Flow matching posterior estimation (FMPE) is a technique for simulation-based inference ( SBI) using continuous normalizing flows.
We show that FMPE achieves competitive performance on an established SBI benchmark, and then demonstrate its improved scalability on a challenging scientific problem.
arXiv Detail & Related papers (2023-05-26T18:00:01Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
We propose a physics-constrained machine learning method-based on reservoir computing- to time-accurately predict extreme events and long-term velocity statistics in a model of turbulent shear flow.
We show that the combination of the two approaches is able to accurately reproduce the velocity statistics and to predict the occurrence and amplitude of extreme events in a model of self-sustaining process in turbulence.
arXiv Detail & Related papers (2021-02-15T12:29:09Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.