FlowDAS: A Flow-Based Framework for Data Assimilation
- URL: http://arxiv.org/abs/2501.16642v1
- Date: Mon, 13 Jan 2025 05:03:41 GMT
- Title: FlowDAS: A Flow-Based Framework for Data Assimilation
- Authors: Siyi Chen, Yixuan Jia, Qing Qu, He Sun, Jeffrey A Fessler,
- Abstract summary: FlowDAS is a novel generative model-based framework using the interpolants to unify the learning of state transition dynamics and generative priors.
Our experiments demonstrate FlowDAS's superior performance on various benchmarks, from the Lorenz system to high-dimensional fluid superresolution tasks.
- Score: 15.64941169350615
- License:
- Abstract: Data assimilation (DA) is crucial for improving the accuracy of state estimation in complex dynamical systems by integrating observational data with physical models. Traditional solutions rely on either pure model-driven approaches, such as Bayesian filters that struggle with nonlinearity, or data-driven methods using deep learning priors, which often lack generalizability and physical interpretability. Recently, score-based DA methods have been introduced, focusing on learning prior distributions but neglecting explicit state transition dynamics, leading to limited accuracy improvements. To tackle the challenge, we introduce FlowDAS, a novel generative model-based framework using the stochastic interpolants to unify the learning of state transition dynamics and generative priors. FlowDAS achieves stable and observation-consistent inference by initializing from proximal previous states, mitigating the instability seen in score-based methods. Our extensive experiments demonstrate FlowDAS's superior performance on various benchmarks, from the Lorenz system to high-dimensional fluid super-resolution tasks. FlowDAS also demonstrates improved tracking accuracy on practical Particle Image Velocimetry (PIV) task, showcasing its effectiveness in complex flow field reconstruction.
Related papers
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTS is an ODE-based model that leverages rectified flow with straight-line transport in probability space.
For unconditional setting, FlowTS achieves state-of-the-art performance, with context FID scores of 0.019 and 0.011 on Stock and ETTh datasets.
For conditional setting, we have achieved superior performance in solar forecasting.
arXiv Detail & Related papers (2024-11-12T03:03:23Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction [5.06136344261226]
CNN-based methods for data fidelity enhancement rely on low-fidelity data patterns and distributions during the training phase.
Our proposed model - Physics-informed Residual Diffusion - demonstrates the capability to elevate the quality of data from both standard low-fidelity inputs.
Experimental results have shown that our approach can effectively reconstruct high-quality outcomes for two-dimensional turbulent flows without requiring retraining.
arXiv Detail & Related papers (2024-04-12T11:45:51Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent Flow Simulation [26.520247496906492]
In this work, we analyze if fully data-driven fluid solvers that utilize an autoregressive rollout based on conditional diffusion models are a viable option to address this challenge.
To quantitatively and qualitatively benchmark the performance of various flow prediction approaches, three challenging 2D scenarios including incompressible and transonic flows, as well as isotropic turbulence are employed.
We find that even simple diffusion-based approaches can outperform multiple established flow prediction methods in terms of accuracy and temporal stability, while being on par with state-of-the-art stabilization techniques like unrolling at training time.
arXiv Detail & Related papers (2023-09-04T18:01:42Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
We propose a novel framework to facilitate the learning of data distributions in high paucity scenarios.
The proposed framework naturally stems from posing the process of learning from incomplete data as a joint optimization task.
arXiv Detail & Related papers (2021-04-03T20:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.