Self-concordant Smoothing for Large-Scale Convex Composite Optimization
- URL: http://arxiv.org/abs/2309.01781v2
- Date: Mon, 19 Feb 2024 20:49:05 GMT
- Title: Self-concordant Smoothing for Large-Scale Convex Composite Optimization
- Authors: Adeyemi D. Adeoye, Alberto Bemporad
- Abstract summary: We introduce a notion of self-concordant smoothing for minimizing the sum of two convex functions, one of which is smooth and the other may be nonsmooth.
We prove the convergence of two resulting algorithms: Prox-N-SCORE, a proximal Newton algorithm and Prox-GGN-SCORE, a proximal generalized Gauss-Newton algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a notion of self-concordant smoothing for minimizing the sum of
two convex functions, one of which is smooth and the other may be nonsmooth.
The key highlight of our approach is in a natural property of the resulting
problem's structure which provides us with a variable-metric selection method
and a step-length selection rule particularly suitable for proximal Newton-type
algorithms. In addition, we efficiently handle specific structures promoted by
the nonsmooth function, such as $\ell_1$-regularization and group-lasso
penalties. We prove the convergence of two resulting algorithms: Prox-N-SCORE,
a proximal Newton algorithm and Prox-GGN-SCORE, a proximal generalized
Gauss-Newton algorithm. The Prox-GGN-SCORE algorithm highlights an important
approximation procedure which helps to significantly reduce most of the
computational overhead associated with the inverse Hessian. This approximation
is essentially useful for overparameterized machine learning models and in the
mini-batch settings. Numerical examples on both synthetic and real datasets
demonstrate the efficiency of our approach and its superiority over existing
approaches. A Julia package implementing the proposed algorithms is available
at https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl.
Related papers
- Nonsmooth Projection-Free Optimization with Functional Constraints [12.20060970177791]
This paper presents a subgradient-based algorithm for constrained nonsmooth convex computation.
Our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints.
Similar performance is observed when deterministic subgradients are replaced with subgradients.
arXiv Detail & Related papers (2023-11-18T23:06:33Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
This work studies problems with zero-order noisy oracle information under the assumption that the objective function is highly smooth.
We consider two kinds of zero-order projected gradient descent algorithms.
arXiv Detail & Related papers (2023-06-03T17:05:13Z) - A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic
Composite Optimization [10.762749887051546]
We propose two-time scale algorithms: ProxDAS-A and Proxcal$DASA-GT.
Unlike prior work, our algorithms achieve comparable complexity without requiring large batch sizes, more complex per-it operations, or stronger assumptions.
arXiv Detail & Related papers (2023-02-20T05:16:18Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
Update [88.73437209862891]
In second-order optimization, a potential bottleneck can be computing the Hessian matrix of the optimized function at every iteration.
We show that the Gaussian sketching matrix can be drastically sparsified, significantly reducing the computational cost of sketching.
We prove that Newton-LESS enjoys nearly the same problem-independent local convergence rate as Gaussian embeddings.
arXiv Detail & Related papers (2021-07-15T17:33:05Z) - Efficient Optimal Transport Algorithm by Accelerated Gradient descent [20.614477547939845]
We propose a novel algorithm to further improve the efficiency and accuracy based on Nesterov's smoothing technique.
The proposed method achieves faster convergence and better accuracy with the same parameter.
arXiv Detail & Related papers (2021-04-12T20:23:29Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
We present the framework of slowly hyper regression under sparsity, allowing regression models to exhibit slow and sparse variations.
We suggest a procedure that reformulates as a binary convex algorithm.
We show that the resulting model outperforms competing formulations in comparable times across various datasets.
arXiv Detail & Related papers (2021-02-22T04:51:44Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
We develop an algorithm to solve a class of non-gence minimax problems.
They can also work with both single or two mini-batch derivatives.
arXiv Detail & Related papers (2020-06-27T03:05:18Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.