RawHDR: High Dynamic Range Image Reconstruction from a Single Raw Image
- URL: http://arxiv.org/abs/2309.02020v1
- Date: Tue, 5 Sep 2023 07:58:21 GMT
- Title: RawHDR: High Dynamic Range Image Reconstruction from a Single Raw Image
- Authors: Yunhao Zou, Chenggang Yan, Ying Fu
- Abstract summary: High dynamic range (RGB) images capture much more intensity levels than standard ones.
Current methods predominantly generate HDR images from 8-bit low dynamic range (LDR) s images that have been degraded by the camera processing pipeline.
Unlike existing methods, the core idea of this work is to incorporate more informative Raw sensor data to generate HDR images.
- Score: 36.17182977927645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High dynamic range (HDR) images capture much more intensity levels than
standard ones. Current methods predominantly generate HDR images from 8-bit low
dynamic range (LDR) sRGB images that have been degraded by the camera
processing pipeline. However, it becomes a formidable task to retrieve
extremely high dynamic range scenes from such limited bit-depth data. Unlike
existing methods, the core idea of this work is to incorporate more informative
Raw sensor data to generate HDR images, aiming to recover scene information in
hard regions (the darkest and brightest areas of an HDR scene). To this end, we
propose a model tailor-made for Raw images, harnessing the unique features of
Raw data to facilitate the Raw-to-HDR mapping. Specifically, we learn exposure
masks to separate the hard and easy regions of a high dynamic scene. Then, we
introduce two important guidances, dual intensity guidance, which guides less
informative channels with more informative ones, and global spatial guidance,
which extrapolates scene specifics over an extended spatial domain. To verify
our Raw-to-HDR approach, we collect a large Raw/HDR paired dataset for both
training and testing. Our empirical evaluations validate the superiority of the
proposed Raw-to-HDR reconstruction model, as well as our newly captured dataset
in the experiments.
Related papers
- HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
Existing HDR NVS methods are mainly based on NeRF.
They suffer from long training time and slow inference speed.
We propose a new framework, High Dynamic Range Gaussian Splatting (-GS)
arXiv Detail & Related papers (2024-05-24T00:46:58Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - HDR Video Reconstruction with a Large Dynamic Dataset in Raw and sRGB
Domains [23.309488653045026]
High dynamic range ( HDR) video reconstruction is attracting more and more attention due to the superior visual quality compared with those of low dynamic range (LDR) videos.
There are still no real LDR- pairs for dynamic scenes due to the difficulty in capturing LDR- frames simultaneously.
In this work, we propose to utilize a staggered sensor to capture two alternate exposure images simultaneously, which are then fused into an HDR frame in both raw and sRGB domains.
arXiv Detail & Related papers (2023-04-10T11:59:03Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
We propose a novel self-supervised approach for learnable HDR estimation that alleviates the need for HDR ground-truth labels.
Experimental results show that the HDR models trained using our proposed self-supervision approach achieve performance competitive with those trained under full supervision.
arXiv Detail & Related papers (2022-03-23T10:22:03Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene.
We propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image.
We present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets.
arXiv Detail & Related papers (2021-10-04T18:50:35Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
This study tackles the challenges of single-shot LDR to HDR mapping by proposing a novel two-stage deep network.
Notably, our proposed method aims to reconstruct an HDR image without knowing hardware information, including camera response function (CRF) and exposure settings.
arXiv Detail & Related papers (2021-04-19T15:19:17Z) - HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world
Benchmark Dataset [30.249052175655606]
We introduce a coarse-to-fine deep learning framework for HDR video reconstruction.
Firstly, we perform coarse alignment and pixel blending in the image space to estimate the coarse HDR video.
Secondly, we conduct more sophisticated alignment and temporal fusion in the feature space of the coarse HDR video to produce better reconstruction.
arXiv Detail & Related papers (2021-03-27T16:40:05Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
We introduce the physical illuminance constraints to our single-shot HDR reconstruction framework.
Our method can generate HDRs which are not only visually appealing but also physically plausible.
arXiv Detail & Related papers (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.