Granger Causal Inference in Multivariate Hawkes Processes by Minimum Message Length
- URL: http://arxiv.org/abs/2309.02027v2
- Date: Wed, 10 Apr 2024 19:03:58 GMT
- Title: Granger Causal Inference in Multivariate Hawkes Processes by Minimum Message Length
- Authors: Katerina Hlavackova-Schindler, Anna Melnykova, Irene Tubikanec,
- Abstract summary: We propose an optimization criterion and model selection algorithm based on the minimum message length (MML) principle.
While most of the state-of-art methods using lasso-type penalization tend to overfitting in scenarios with short time horizons, the proposed MML-based method achieves high F1 scores in these settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate Hawkes processes (MHPs) are versatile probabilistic tools used to model various real-life phenomena: earthquakes, operations on stock markets, neuronal activity, virus propagation and many others. In this paper, we focus on MHPs with exponential decay kernels and estimate connectivity graphs, which represent the Granger causal relations between their components. We approach this inference problem by proposing an optimization criterion and model selection algorithm based on the minimum message length (MML) principle. MML compares Granger causal models using the Occam's razor principle in the following way: even when models have a comparable goodness-of-fit to the observed data, the one generating the most concise explanation of the data is preferred. While most of the state-of-art methods using lasso-type penalization tend to overfitting in scenarios with short time horizons, the proposed MML-based method achieves high F1 scores in these settings. We conduct a numerical study comparing the proposed algorithm to other related classical and state-of-art methods, where we achieve the highest F1 scores in specific sparse graph settings. We illustrate the proposed method also on G7 sovereign bond data and obtain causal connections, which are in agreement with the expert knowledge available in the literature.
Related papers
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
We present a lightweight approach to sequence classification using Ensemble Methods for Hidden Markov Models (HMMs)
HMMs offer significant advantages in scenarios with imbalanced or smaller datasets due to their simplicity, interpretability, and efficiency.
Our ensemble-based scoring method enables the comparison of sequences of any length and improves performance on imbalanced datasets.
arXiv Detail & Related papers (2024-09-11T20:59:32Z) - Representation and De-interleaving of Mixtures of Hidden Markov Processes [3.7348616912887445]
De-interleaving of mixtures of Hidden Markov Processes (HMPs) generally depends on its representation model.
This paper proposes a novel representation model and corresponding de-interleaving methods for the mixtures of HMPs.
arXiv Detail & Related papers (2024-06-01T12:24:23Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Toward the Identifiability of Comparative Deep Generative Models [7.5479347719819865]
We propose a theory of identifiability for comparative Deep Generative Models (DGMs)
We show that, while these models lack identifiability across a general class of mixing functions, they surprisingly become identifiable when the mixing function is piece-wise affine.
We also investigate the impact of model misspecification, and empirically show that previously proposed regularization techniques for fitting comparative DGMs help with identifiability when the number of latent variables is not known in advance.
arXiv Detail & Related papers (2024-01-29T06:10:54Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Causal Discovery in Hawkes Processes by Minimum Description Length [11.627871646343502]
Hawkes processes are a class of temporal point processes which exhibit a natural notion of causality.
This paper approaches the problem of learning Granger-causal network in multi-dimensional Hawkes processes.
We compare our algorithm with the state-of-the-art baseline methods on synthetic and real-world financial data.
arXiv Detail & Related papers (2022-06-10T10:16:03Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) is a popular model to generate random graphs with community structure given an expected degree sequence.
Standard approach of community detection based on the DCSBM is to search for the model parameters that are the most likely to have produced the observed network data through maximum likelihood estimation (MLE)
We present mathematical programming formulations and exact solution methods that can provably find the model parameters and community assignments of maximum likelihood given an observed graph.
arXiv Detail & Related papers (2021-01-26T22:04:40Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.