Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays
- URL: http://arxiv.org/abs/2010.02469v3
- Date: Thu, 27 Jan 2022 18:12:12 GMT
- Title: Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays
- Authors: {\L}ukasz Kidzi\'nski, Francis K.C. Hui, David I. Warton, and Trevor
Hastie
- Abstract summary: Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmeasured or latent variables are often the cause of correlations between
multivariate measurements, which are studied in a variety of fields such as
psychology, ecology, and medicine. For Gaussian measurements, there are
classical tools such as factor analysis or principal component analysis with a
well-established theory and fast algorithms. Generalized Linear Latent Variable
models (GLLVMs) generalize such factor models to non-Gaussian responses.
However, current algorithms for estimating model parameters in GLLVMs require
intensive computation and do not scale to large datasets with thousands of
observational units or responses.
In this article, we propose a new approach for fitting GLLVMs to
high-dimensional datasets, based on approximating the model using penalized
quasi-likelihood and then using a Newton method and Fisher scoring to learn the
model parameters. Computationally, our method is noticeably faster and more
stable, enabling GLLVM fits to much larger matrices than previously possible.
We apply our method on a dataset of 48,000 observational units with over 2,000
observed species in each unit and find that most of the variability can be
explained with a handful of factors. We publish an easy-to-use implementation
of our proposed fitting algorithm.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data [0.0]
This research develops an approximate Gibbs sampler (AGS) to efficiently learn the HBPRMs while maintaining the inference accuracy.
Numerical experiments using real and synthetic datasets with small and large counts demonstrate the superior performance of AGS.
arXiv Detail & Related papers (2022-11-28T21:00:55Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
In many applications data span variables of different types, whose principled joint analysis is nontrivial.
Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging.
We propose flexible and scalable methodology for data with variables of entirely general mixed type.
arXiv Detail & Related papers (2022-11-21T18:21:31Z) - Inference of Multiscale Gaussian Graphical Model [0.0]
We propose a new method allowing to simultaneously infer a hierarchical clustering structure and the graphs describing the structure of independence at each level of the hierarchy.
Results on real and synthetic data are presented.
arXiv Detail & Related papers (2022-02-11T17:11:20Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
We derive a basis function approximation scheme for mixed-domain covariance functions.
We show that we can approximate the exact GP model accurately in a fraction of the runtime.
We also demonstrate a scalable model reduction workflow for obtaining smaller and more interpretable models.
arXiv Detail & Related papers (2021-11-03T04:47:37Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
We are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion.
We propose a general framework that combines disparate data types through the exponential family of distributions.
The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features.
arXiv Detail & Related papers (2021-08-27T18:10:31Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.