Principle of minimal singularity for Green's functions
- URL: http://arxiv.org/abs/2309.02201v4
- Date: Wed, 21 Feb 2024 07:36:58 GMT
- Title: Principle of minimal singularity for Green's functions
- Authors: Wenliang Li
- Abstract summary: We consider a new kind of analytic continuation of correlation functions, inspired by two approaches to underdetermined Dyson-Schwinger equations in $D$-dimensional spacetime.
We derive rapidly convergent results for the Hermitian quartic and non-Hermitian cubic theories.
- Score: 1.8855270809505869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analytic continuations of integer-valued parameters can lead to profound
insights, such as angular momentum in Regge theory, the number of replicas in
spin glasses, the number of internal degrees of freedom, the spacetime
dimension in dimensional regularization and Wilson's renormalization group. In
this work, we consider a new kind of analytic continuation of correlation
functions, inspired by two recent approaches to underdetermined Dyson-Schwinger
equations in $D$-dimensional spacetime. If the Green's functions
$G_n=\langle\phi^n\rangle$ admit analytic continuation to complex values of
$n$, the two different approaches are unified by a novel principle for
self-consistent problems: Singularities in the complex plane should be minimal.
This principle manifests as the merging of different branches of Green's
functions in the quartic theories. For $D=0$, we obtain the closed-form
solutions of the general $g\phi^m$ theories, including the cases with complex
coupling constant $g$ or non-integer power $m$. For $D=1$, we derive rapidly
convergent results for the Hermitian quartic and non-Hermitian cubic theories
by minimizing the complexity of the singularity at $n=\infty$.
Related papers
- Theory of Complex Particle without Extra Dimensions [0.0]
Critical dimension of the complex particle in Minkowski spacetime is $D = 4$, while $D = 2, 4$ or $6$ are permitted in Euclid spacetime.
The origin of the restriction to the dimension is the existence of tertiary constraint in the canonical theory, quantization.
arXiv Detail & Related papers (2024-07-02T03:25:13Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - The $φ^n$ trajectory bootstrap [1.8855270809505869]
We show that the non-integer $n$ results for $langlephinrangle$ or $langle(iphi)nrangle$ are consistent with those from the wave function approach.
In the $mathcalPT$ invariant case, the existence of $langle(iphi)nrangle$ with non-integer $n$ allows us to bootstrap the non-Hermitian theories with non-integer powers.
arXiv Detail & Related papers (2024-02-08T16:09:06Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Taming Dyson-Schwinger equations with null states [0.913755431537592]
In quantum field theory, the Dyson-Schwinger equations are an infinite set of equations relating $n$-point Green's functions in a self-consistent manner.
One of the main problems is that a finite truncation of the infinite system is underdetermined.
In this paper, we propose another avenue in light of the null bootstrap.
arXiv Detail & Related papers (2023-03-20T10:04:43Z) - Universality in the tripartite information after global quenches:
(generalised) quantum XY models [0.0]
We consider the R'enyi-$alpha$ tripartite information $I_3(alpha)$ of three adjacent subsystems in the stationary state emerging after global quenches in noninteracting spin chains from both homogeneous and bipartite states.
We identify settings in which $I_3(alpha)$ remains nonzero also in the limit of infinite lengths and develop an effective quantum field theory description of free fermionic fields on a ladder.
arXiv Detail & Related papers (2023-02-02T18:50:42Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - A New Look at the $C^{0}$-formulation of the Strong Cosmic Censorship
Conjecture [68.8204255655161]
We argue that for generic black hole parameters as initial conditions for Einstein equations, the metric is $C0$-extendable to a larger Lorentzian manifold.
We prove it violates the "complexity=volume" conjecture for a low-temperature hyperbolic AdS$_d+1$ black hole dual to a CFT living on a ($d-1$)-dimensional hyperboloid $H_d-1$.
arXiv Detail & Related papers (2022-06-17T12:14:33Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.