On the Complexity of Differentially Private Best-Arm Identification with
Fixed Confidence
- URL: http://arxiv.org/abs/2309.02202v1
- Date: Tue, 5 Sep 2023 13:07:25 GMT
- Title: On the Complexity of Differentially Private Best-Arm Identification with
Fixed Confidence
- Authors: Achraf Azize, Marc Jourdan, Aymen Al Marjani, Debabrota Basu
- Abstract summary: We study the problem of Best Arm Identification with fixed confidence under $epsilon$-global Differential Privacy.
Our lower bound suggests the existence of two privacy regimes depending on the privacy budget.
We propose AdaP-TT, an $epsilon$-global DP variant of the Top Two algorithm.
- Score: 16.295693624977563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Best Arm Identification (BAI) problems are progressively used for
data-sensitive applications, such as designing adaptive clinical trials, tuning
hyper-parameters, and conducting user studies to name a few. Motivated by the
data privacy concerns invoked by these applications, we study the problem of
BAI with fixed confidence under $\epsilon$-global Differential Privacy (DP).
First, to quantify the cost of privacy, we derive a lower bound on the sample
complexity of any $\delta$-correct BAI algorithm satisfying $\epsilon$-global
DP. Our lower bound suggests the existence of two privacy regimes depending on
the privacy budget $\epsilon$. In the high-privacy regime (small $\epsilon$),
the hardness depends on a coupled effect of privacy and a novel
information-theoretic quantity, called the Total Variation Characteristic Time.
In the low-privacy regime (large $\epsilon$), the sample complexity lower bound
reduces to the classical non-private lower bound. Second, we propose AdaP-TT,
an $\epsilon$-global DP variant of the Top Two algorithm. AdaP-TT runs in
arm-dependent adaptive episodes and adds Laplace noise to ensure a good
privacy-utility trade-off. We derive an asymptotic upper bound on the sample
complexity of AdaP-TT that matches with the lower bound up to multiplicative
constants in the high-privacy regime. Finally, we provide an experimental
analysis of AdaP-TT that validates our theoretical results.
Related papers
- Differentially Private Best-Arm Identification [14.916947598339988]
Best Arm Identification (BAI) problems are progressively used for data-sensitive applications.
Motivated by the data privacy concerns invoked by these applications, we study the problem of BAI with fixed confidence in both the local and central models.
arXiv Detail & Related papers (2024-06-10T16:02:48Z) - FLIPHAT: Joint Differential Privacy for High Dimensional Sparse Linear Bandits [8.908421753758475]
High dimensional sparse linear bandits serve as an efficient model for sequential decision-making problems.
Motivated by data privacy concerns, we study the joint differentially private high dimensional sparse linear bandits.
We show that FLIPHAT achieves optimal regret in terms of privacy parameters.
arXiv Detail & Related papers (2024-05-22T22:19:12Z) - Fixed-Budget Differentially Private Best Arm Identification [62.36929749450298]
We study best arm identification (BAI) in linear bandits in the fixed-budget regime under differential privacy constraints.
We derive a minimax lower bound on the error probability, and demonstrate that the lower and the upper bounds decay exponentially in $T$.
arXiv Detail & Related papers (2024-01-17T09:23:25Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
We show how to shuffle $(epsilon_i,delta_i)$-PLDP setting with personalized privacy parameters.
We prove that shuffled $(epsilon_i,delta_i)$-PLDP process approximately preserves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
arXiv Detail & Related papers (2023-12-22T02:31:46Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
We study the space complexity of the two related fields of differential privacy and adaptive data analysis.
We show that there exists a problem P that requires exponentially more space to be solved efficiently with differential privacy.
The line of work on adaptive data analysis focuses on understanding the number of samples needed for answering a sequence of adaptive queries.
arXiv Detail & Related papers (2023-02-11T14:45:31Z) - When Privacy Meets Partial Information: A Refined Analysis of
Differentially Private Bandits [4.964737844687583]
We study the problem of multi-armed bandits with $epsilon$-global Differential Privacy (DP)
We instantiate $epsilon$-global DP extensions of UCB and KL-UCB algorithms, namely AdaP-UCB and AdaP-KLUCB.
AdaP-KLUCB is the first algorithm that both satisfies $epsilon$-global DP and yields a regret upper bound that matches the problem-dependent lower bound up to multiplicative constants.
arXiv Detail & Related papers (2022-09-06T15:26:24Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.