Propagating Gottesman-Kitaev-Preskill states encoded in an optical
oscillator
- URL: http://arxiv.org/abs/2309.02306v1
- Date: Tue, 5 Sep 2023 15:21:20 GMT
- Title: Propagating Gottesman-Kitaev-Preskill states encoded in an optical
oscillator
- Authors: Shunya Konno, Warit Asavanant, Fumiya Hanamura, Hironari Nagayoshi,
Kosuke Fukui, Atsushi Sakaguchi, Ryuhoh Ide, Fumihiro China, Masahiro Yabuno,
Shigehito Miki, Hirotaka Terai, Kan Takase, Mamoru Endo, Petr Marek, Radim
Filip, Peter van Loock, Akira Furusawa
- Abstract summary: A logical qubit called Gottesman-Kitaev-Preskill (GKP) qubit is efficient for mitigating errors in a quantum computer.
GKP qubits have been only demonstrated at mechanical and microwave frequency in a highly nonlinear physical system.
In this work, we realize a GKP state in propagating light at the telecommunication wavelength and demonstrate homodyne meausurements on the GKP states.
- Score: 0.3901201146779002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A quantum computer with low-error, high-speed quantum operations and
capability for interconnections is required for useful quantum computations. A
logical qubit called Gottesman-Kitaev-Preskill (GKP) qubit in a single Bosonic
harmonic oscillator is efficient for mitigating errors in a quantum computer.
The particularly intriguing prospect of GKP qubits is that entangling gates as
well as syndrome measurements for quantum error correction only require
efficient, noise-robust linear operations. To date, however, GKP qubits have
been only demonstrated at mechanical and microwave frequency in a highly
nonlinear physical system. The physical platform that naturally provides the
scalable linear toolbox is optics, including near-ideal loss-free beam
splitters and near-unit efficiency homodyne detectors that allow to obtain the
complete analog syndrome for optimized quantum error correction. Additional
optical linear amplifiers and specifically designed GKP qubit states are then
all that is needed for universal quantum computing. In this work, we realize a
GKP state in propagating light at the telecommunication wavelength and
demonstrate homodyne meausurements on the GKP states for the first time without
any loss corrections. Our GKP states do not only show non-classicality and
non-Gaussianity at room temperature and atmospheric pressure, but unlike the
existing schemes with stationary qubits, they are realizable in a propagating
wave system. This property permits large-scale quantum computation and
interconnections, with strong compatibility to optical fibers and 5G
telecommunication technology.
Related papers
- Bosonic Quantum Error Correction with Neutral Atoms in Optical Dipole Traps [1.351813974961217]
A prominent class of bosonic codes are Gottesman-Kitaev-Preskill (GKP) codes of which implementations have been demonstrated with trapped ions and microwave cavities.
In this work, we investigate theoretically the preparation and error correction of a GKP qubit in a vibrational mode of a neutral atom stored in an optical dipole trap.
The protocols we develop make use of motional states and, additionally, internal electronic states of the trapped atom to serve as an ancilla qubit.
arXiv Detail & Related papers (2024-08-26T13:13:32Z) - Generation of Flying Logical Qubits using Generalized Photon Subtraction
with Adaptive Gaussian Operations [0.0]
We propose a method to efficiently synthesize GKP qubits from several quantum states by adaptive Gaussian operations.
The single-shot success probability of generating fault-tolerant GKP qubits in a realistic scale system exceeds 10$%$, which is one million times better than previous methods.
arXiv Detail & Related papers (2024-01-14T13:42:12Z) - Error-corrected quantum repeaters with GKP qudits [1.1279808969568252]
The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode higher-dimensional qudits into individual bosonic modes.
The GKP code has found recent applications in theoretical investigations of quantum communication protocols.
arXiv Detail & Related papers (2023-03-28T15:04:06Z) - Modelling semiconductor spin qubits and their charge noise environment
for quantum gate fidelity estimation [0.9406493726662083]
The spin of an electron confined in semiconductor quantum dots is a promising candidate for quantum bit (qubit) implementations.
We present here a co-modelling framework for double quantum dot (DQD) devices and their charge noise environment.
We find an inverse correlation between quantum gate errors and quantum dot confinement.
arXiv Detail & Related papers (2022-10-10T10:12:54Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits [0.0]
Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
arXiv Detail & Related papers (2020-11-30T15:14:34Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.