論文の概要: Prototype-based Dataset Comparison
- arxiv url: http://arxiv.org/abs/2309.02401v1
- Date: Tue, 5 Sep 2023 17:27:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 13:41:59.955606
- Title: Prototype-based Dataset Comparison
- Title(参考訳): プロトタイプベースデータセットの比較
- Authors: Nanne van Noord
- Abstract要約: 我々は,データセット間の概念レベルのプロトタイプを学習するモジュールを提案する。
自己指導型学習を利用して、これらのプロトタイプを監督せずに発見する。
その結果,データセット比較はデータセット検査を延長することがわかった。
- 参考スコア(独自算出の注目度): 7.972049938414705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dataset summarisation is a fruitful approach to dataset inspection. However,
when applied to a single dataset the discovery of visual concepts is restricted
to those most prominent. We argue that a comparative approach can expand upon
this paradigm to enable richer forms of dataset inspection that go beyond the
most prominent concepts. To enable dataset comparison we present a module that
learns concept-level prototypes across datasets. We leverage self-supervised
learning to discover these prototypes without supervision, and we demonstrate
the benefits of our approach in two case-studies. Our findings show that
dataset comparison extends dataset inspection and we hope to encourage more
works in this direction. Code and usage instructions available at
https://github.com/Nanne/ProtoSim
- Abstract(参考訳): データセットの要約は、データセットインスペクションに対する実りあるアプローチです。
しかし、単一のデータセットに適用すると、視覚概念の発見は最も顕著なものに限られる。
比較アプローチは、このパラダイムを拡張して、最も顕著な概念を越えて、よりリッチなデータセットインスペクションを可能にします。
データセットの比較を可能にするために、データセット間で概念レベルのプロトタイプを学ぶモジュールを提案する。
自己教師付き学習を活用して,これらのプロトタイプを無監督で発見し,このアプローチの利点を2つのケーススタディで実証した。
以上の結果から,データセット比較はデータセット検査を延長し,さらなる作業の促進を期待できる。
コードと使用手順はhttps://github.com/nanne/protosimで利用可能
関連論文リスト
- Diffusion Models as Data Mining Tools [87.77999285241219]
本稿では、画像合成のために訓練された生成モデルを視覚データマイニングのツールとして利用する方法について述べる。
特定のデータセットから画像を合成するために条件拡散モデルを微調整した後、これらのモデルを用いて典型性尺度を定義することができることを示す。
この尺度は、地理的位置、タイムスタンプ、セマンティックラベル、さらには病気の存在など、異なるデータラベルに対する典型的な視覚的要素がどのように存在するかを評価する。
論文 参考訳(メタデータ) (2024-07-20T17:14:31Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
本研究では,Large Language Models (LLMs) を用いてデータの洞察の発見を自動化する可能性について検討する。
そこで本稿では,データセット内の意味的かつ関連する情報(フラグ)を識別する能力を測定するために,フラグを捕捉する原理に基づく新しい評価手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T14:20:06Z) - A Bag-of-Prototypes Representation for Dataset-Level Applications [24.629132557336312]
本研究では,データセットレベルの2つのタスクに対するデータセットベクトル化について検討する。
本稿では,パッチ記述子からなるイメージレベルバッグを,セマンティックプロトタイプからなるデータセットレベルバッグに拡張する,Bop-of-prototypes(BoP)データセット表現を提案する。
BoPは、2つのデータセットレベルのタスクに対する一連のベンチマークにおいて、既存の表現に対する優位性を一貫して示している。
論文 参考訳(メタデータ) (2023-03-23T13:33:58Z) - Modeling Entities as Semantic Points for Visual Information Extraction
in the Wild [55.91783742370978]
文書画像から鍵情報を正確かつ堅牢に抽出する手法を提案する。
我々は、エンティティを意味的ポイントとして明示的にモデル化する。つまり、エンティティの中心点は、異なるエンティティの属性と関係を記述する意味情報によって豊かになる。
提案手法は,従来の最先端モデルと比較して,エンティティラベルとリンクの性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-03-23T08:21:16Z) - Can Population-based Engagement Improve Personalisation? A Novel Dataset
and Experiments [21.12546768556595]
VLEは、公開されている科学ビデオ講義から抽出されたコンテンツとビデオベースの特徴からなる、新しいデータセットである。
実験結果から,新たに提案したVLEデータセットがコンテキストに依存しないエンゲージメント予測モデルの構築につながることが示唆された。
構築したモデルとパーソナライズアルゴリズムを組み合わせる実験は、教育推薦者によるコールドスタート問題に対処する上で有望な改善を示す。
論文 参考訳(メタデータ) (2022-06-22T15:53:24Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
対照的な自己教師型学習は、セグメンテーションやオブジェクト検出といった多くの下流タスクにおいて教師付き事前訓練よりも優れています。
本稿では,データセットのバイアスが既存手法にどのように影響するかを最初に検討する。
現在のコントラストアプローチは、(i)オブジェクト中心対シーン中心、(ii)一様対ロングテール、(iii)一般対ドメイン固有データセットなど、驚くほどうまく機能することを示す。
論文 参考訳(メタデータ) (2021-06-10T17:59:13Z) - Simple multi-dataset detection [83.9604523643406]
複数の大規模データセット上で統合検出器を訓練する簡単な方法を提案する。
データセット固有のアウトプットを共通の意味分類に自動的に統合する方法を示す。
私たちのアプローチは手動の分類学の調整を必要としません。
論文 参考訳(メタデータ) (2021-02-25T18:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。