A skeletonization algorithm for gradient-based optimization
- URL: http://arxiv.org/abs/2309.02527v1
- Date: Tue, 5 Sep 2023 18:40:14 GMT
- Title: A skeletonization algorithm for gradient-based optimization
- Authors: Martin J. Menten and Johannes C. Paetzold and Veronika A. Zimmer and
Suprosanna Shit and Ivan Ezhov and Robbie Holland and Monika Probst and Julia
A. Schnabel and Daniel Rueckert
- Abstract summary: The skeleton of a digital image is a compact representation of its topology, geometry, and scale.
Most existing skeletonization algorithms are not differentiable, making it impossible to integrate them with gradient-based optimization.
This work introduces the first three-dimensional skeletonization algorithm that is both compatible with gradient-based optimization and preserves an object's topology.
- Score: 13.2737105544687
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The skeleton of a digital image is a compact representation of its topology,
geometry, and scale. It has utility in many computer vision applications, such
as image description, segmentation, and registration. However, skeletonization
has only seen limited use in contemporary deep learning solutions. Most
existing skeletonization algorithms are not differentiable, making it
impossible to integrate them with gradient-based optimization. Compatible
algorithms based on morphological operations and neural networks have been
proposed, but their results often deviate from the geometry and topology of the
true medial axis. This work introduces the first three-dimensional
skeletonization algorithm that is both compatible with gradient-based
optimization and preserves an object's topology. Our method is exclusively
based on matrix additions and multiplications, convolutional operations, basic
non-linear functions, and sampling from a uniform probability distribution,
allowing it to be easily implemented in any major deep learning library. In
benchmarking experiments, we prove the advantages of our skeletonization
algorithm compared to non-differentiable, morphological, and
neural-network-based baselines. Finally, we demonstrate the utility of our
algorithm by integrating it with two medical image processing applications that
use gradient-based optimization: deep-learning-based blood vessel segmentation,
and multimodal registration of the mandible in computed tomography and magnetic
resonance images.
Related papers
- Advancements in Feature Extraction Recognition of Medical Imaging Systems Through Deep Learning Technique [0.36651088217486427]
An objective function based on weight is proposed to achieve the purpose of fast image recognition.
A technique for threshold optimization utilizing a simplex algorithm is presented.
It is found that different types of objects are independent of each other and compact in image processing.
arXiv Detail & Related papers (2024-05-23T04:46:51Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
arXiv Detail & Related papers (2023-08-06T15:32:16Z) - Machine learning based biomedical image processing for echocardiographic
images [0.0]
The proposed method uses K-Nearest Neighbor (KNN) algorithm for segmentation of medical images.
The trained neural network has been tested successfully on a group of echocardiographic images.
arXiv Detail & Related papers (2023-03-16T06:23:43Z) - A Novel Algorithm for Exact Concave Hull Extraction [0.0]
Region extraction is necessary in a wide range of applications, from object detection in autonomous driving to analysis of subcellular morphology in cell biology.
There exist two main approaches: convex hull extraction, for which exact and efficient algorithms exist and concave hulls, which are better at capturing real-world shapes but do not have a single solution.
In this study, we present a novel algorithm that can provide concave hulls with maximal (i.e. pixel-perfect) resolution and is tunable for speed-efficiency tradeoffs.
arXiv Detail & Related papers (2022-06-23T05:26:48Z) - A Unified Framework for Implicit Sinkhorn Differentiation [58.56866763433335]
We propose an algorithm that obtains analytical gradients of a Sinkhorn layer via implicit differentiation.
We show that it is computationally more efficient, particularly when resources like GPU memory are scarce.
arXiv Detail & Related papers (2022-05-13T14:45:31Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
We propose a method to automatically find a compact and problem-specific network for graph convolutional networks in a progressive manner.
Experimental results on two datasets for skeleton-based human action recognition indicate that the proposed method has competitive or even better classification performance.
arXiv Detail & Related papers (2020-11-11T09:57:49Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.