論文の概要: Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting
- arxiv url: http://arxiv.org/abs/2309.02600v1
- Date: Tue, 5 Sep 2023 22:13:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 17:26:14.507159
- Title: Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting
- Title(参考訳): 短期気象予報におけるハイパーパラメータ選択のためのメタヒューリスティックアルゴリズムの比較評価
- Authors: Anuvab Sen, Arul Rhik Mazumder, Dibyarup Dutta, Udayon Sen, Pathikrit
Syam and Sandipan Dhar
- Abstract要約: 本稿では,遺伝的アルゴリズム (GA), 微分進化 (DE), 粒子群最適化 (PSO) のメタヒューリスティックアルゴリズムの適用について検討する。
平均二乗誤差(MSE)や平均絶対パーセンテージ誤差(MAPE)といった指標に基づいて天気予報の性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weather forecasting plays a vital role in numerous sectors, but accurately
capturing the complex dynamics of weather systems remains a challenge for
traditional statistical models. Apart from Auto Regressive time forecasting
models like ARIMA, deep learning techniques (Vanilla ANNs, LSTM and GRU
networks), have shown promise in improving forecasting accuracy by capturing
temporal dependencies. This paper explores the application of metaheuristic
algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE), and
Particle Swarm Optimization (PSO), to automate the search for optimal
hyperparameters in these model architectures. Metaheuristic algorithms excel in
global optimization, offering robustness, versatility, and scalability in
handling non-linear problems. We present a comparative analysis of different
model architectures integrated with metaheuristic optimization, evaluating
their performance in weather forecasting based on metrics such as Mean Squared
Error (MSE) and Mean Absolute Percentage Error (MAPE). The results demonstrate
the potential of metaheuristic algorithms in enhancing weather forecasting
accuracy \& helps in determining the optimal set of hyper-parameters for each
model. The paper underscores the importance of harnessing advanced optimization
techniques to select the most suitable metaheuristic algorithm for the given
weather forecasting task.
- Abstract(参考訳): 気象予報は多くの分野において重要な役割を担っているが、従来の統計モデルでは気象システムの複雑なダイナミクスを正確に把握することが課題となっている。
ARIMAのような自動回帰時間予測モデルとは別に、ディープラーニング技術(Vanilla ANNs、LSTM、GRUネットワーク)は、時間依存性をキャプチャすることで予測精度を向上させることを約束している。
本稿では,遺伝的アルゴリズム (GA), 微分進化 (DE), 粒子群最適化 (PSO) のメタヒューリスティックアルゴリズムを適用し, モデルアーキテクチャにおける最適ハイパーパラメータの探索を自動化する。
メタヒューリスティックアルゴリズムはグローバル最適化に優れ、非線形問題を扱う際の堅牢性、汎用性、スケーラビリティを提供する。
メタヒューリスティック最適化と統合された異なるモデルアーキテクチャの比較分析を行い、平均正方形誤差(MSE)や平均絶対パーセンテージ誤差(MAPE)といった指標に基づいて天気予報の性能を評価する。
その結果、気象予報精度向上におけるメタヒューリスティックアルゴリズムの可能性が示され、各モデルに対する最適なハイパーパラメータのセットを決定するのに役立つ。
本稿では,天気予報タスクに最適なメタヒューリスティックアルゴリズムを選択するために,高度な最適化手法を活用することの重要性を強調した。
関連論文リスト
- Testing the Efficacy of Hyperparameter Optimization Algorithms in Short-Term Load Forecasting [0.0]
我々は、Panaama Electricityデータセットを用いて、サロゲート予測アルゴリズムであるXGBoostのHPOアルゴリズムの性能を、精度(MAPE、$R2$)とランタイムで評価する。
その結果,Random SearchよりもHPOアルゴリズムが優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-19T09:08:52Z) - RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms [0.393259574660092]
RHiOTSは、階層的な時系列予測モデルとアルゴリズムを実世界のデータセット上で堅牢性を評価するように設計されている。
RHiOTSは、複雑な多次元ロバストネス評価結果を直感的で容易に解釈可能なビジュアルに変換する革新的な可視化コンポーネントを組み込んでいる。
従来の統計的手法は、変換効果が非常に破壊的である場合を除き、最先端のディープラーニングアルゴリズムよりも頑健であることを示す。
論文 参考訳(メタデータ) (2024-08-06T18:52:15Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
我々は、損失の大きさの経験的確率密度関数に基づく新しい枠組みを導入し、これを「緩やかな等級ヒストグラム」と呼ぶ。
そこで本稿では, 最適安全のための精密かつ高精度な探索空間を自動推定するために, 勾配等級ヒストグラムを用いた新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-20T04:34:19Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Applications of Nature-Inspired Metaheuristic Algorithms for Tackling Optimization Problems Across Disciplines [12.664160352147293]
本稿では,自然に着想を得たメタヒューリスティックアルゴリズムの有用性を示す。
本研究の主な目的は,CSO-MAのようなメタヒューリスティックなアルゴリズムが,統計学における様々な種類の最適化問題に取り組むのに効率的であることを示すことである。
論文 参考訳(メタデータ) (2023-08-08T16:41:33Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
ディープラーニングフレームワークにおける機械学習問題に適用可能な適応正規化を取り入れた一階最適化アルゴリズムを提案する。
一般的なベンチマークデータセットに適用した従来のネットワークモデルに基づく画像分類タスクを用いて,提案アルゴリズムの有効性を実証的に実証した。
論文 参考訳(メタデータ) (2020-04-14T07:54:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。