Non-Clashing Teaching Maps for Balls in Graphs
- URL: http://arxiv.org/abs/2309.02876v2
- Date: Mon, 29 Jul 2024 14:10:52 GMT
- Title: Non-Clashing Teaching Maps for Balls in Graphs
- Authors: Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel,
- Abstract summary: We show that the associated decision problem B-NCTD$+$ for NCTD$+$ is NP-complete in split, co-bipartite, and bipartite graphs.
We also prove that, unless the ETH fails, B-NCTD$+$ does not admit an algorithm running in time $22o(textvc)cdot nO(1)$, nor a kernelization algorithm outputting a kernel with $2o(textvc)cdot nO(1)$.
- Score: 0.05356944479760104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Kirkpatrick et al. [ALT 2019] and Fallat et al. [JMLR 2023] introduced non-clashing teaching and showed it is the most efficient machine teaching model satisfying the Goldman-Mathias collusion-avoidance criterion. A teaching map $T$ for a concept class $\mathcal{C}$ assigns a (teaching) set $T(C)$ of examples to each concept $C \in \mathcal{C}$. A teaching map is non-clashing if no pair of concepts are consistent with the union of their teaching sets. The size of a non-clashing teaching map (NCTM) $T$ is the maximum size of a teaching set $T(C)$, $C \in \mathcal{C}$. The non-clashing teaching dimension NCTD$(\mathcal{C})$ of $\mathcal{C}$ is the minimum size of an NCTM for $\mathcal{C}$. NCTM$^+$ and NCTD$^+(\mathcal{C})$ are defined analogously, except the teacher may only use positive examples. We study NCTMs and NCTM$^+$s for the concept class $\mathcal{B}(G)$ consisting of all balls of a graph $G$. We show that the associated decision problem B-NCTD$^+$ for NCTD$^+$ is NP-complete in split, co-bipartite, and bipartite graphs. Surprisingly, we even prove that, unless the ETH fails, B-NCTD$^+$ does not admit an algorithm running in time $2^{2^{o(\text{vc})}}\cdot n^{O(1)}$, nor a kernelization algorithm outputting a kernel with $2^{o(\text{vc})}$ vertices, where vc is the vertex cover number of $G$. We complement these lower bounds with matching upper bounds. These are extremely rare results: it is only the second problem in NP to admit such a tight double-exponential lower bound parameterized by vc, and only one of very few problems to admit such an ETH-based conditional lower bound on the number of vertices in a kernel. For trees, interval graphs, cycles, and trees of cycles, we derive NCTM$^+$s or NCTMs for $\mathcal{B}(G)$ of size proportional to its VC-dimension, and for Gromov-hyperbolic graphs, we design an approximate NCTM$^+$ of size 2.
Related papers
- Algorithmic contiguity from low-degree conjecture and applications in correlated random graphs [0.0]
We provide evidence of computational hardness for two problems.
One of the main ingredient in our proof is to derive certain forms of emphalgorithm contiguity between two probability measures.
This framework provides a useful tool for performing reductions between different tasks.
arXiv Detail & Related papers (2025-02-14T00:24:51Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - On character table of Clifford groups [0.0]
We construct the character table of the Clifford group $mathcalC_n$ for $n=1,2,3$.
As an application, we can efficiently decompose the (higher power of) tensor product of the matrix representation.
As a byproduct, we give a presentation of the finite symplectic group $Sp(2n,2)$ in terms of generators and relations.
arXiv Detail & Related papers (2023-09-26T11:29:35Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
We study the complexity of PAC learning halfspaces in the presence of Massart noise.
We show that no-time Massart halfspace learners can achieve error better than $Omega(eta)$, even if the optimal 0-1 error is small.
arXiv Detail & Related papers (2022-07-28T17:50:53Z) - Random Graph Matching in Geometric Models: the Case of Complete Graphs [21.689343447798677]
This paper studies the problem of matching two complete graphs with edge weights correlated through latent geometries.
We derive an approximate maximum likelihood estimator, which provably achieves, with high probability, perfect recovery of $pi*$.
As a side discovery, we show that the celebrated spectral algorithm of [Ume88] emerges as a further approximation to the maximum likelihood in the geometric model.
arXiv Detail & Related papers (2022-02-22T04:14:45Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
Linear bandit algorithms yield $tildemathcalO(nsqrtT)$ pseudo-regret bounds on compact convex action sets.
Two types of structural assumptions lead to better pseudo-regret bounds.
arXiv Detail & Related papers (2021-03-10T07:33:03Z) - Algorithms and Hardness for Linear Algebra on Geometric Graphs [14.822517769254352]
We show that the exponential dependence on the dimension dimension $d in the celebrated fast multipole method of Greengard and Rokhlin cannot be improved.
This is the first formal limitation proven about fast multipole methods.
arXiv Detail & Related papers (2020-11-04T18:35:02Z) - Phase Transitions in Rate Distortion Theory and Deep Learning [5.145741425164946]
We say that $mathcalS$ can be compressed at rate $s$ if we can achieve an error of $mathcalO(R-s)$ for encoding $mathcalS$.
We show that for certain "nice" signal classes $mathcalS$, a phase transition occurs: We construct a probability measure $mathbbP$ on $mathcalS$.
arXiv Detail & Related papers (2020-08-03T16:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.