Learning and Computation of $Φ$-Equilibria at the Frontier of Tractability
- URL: http://arxiv.org/abs/2502.18582v2
- Date: Fri, 28 Feb 2025 00:45:49 GMT
- Title: Learning and Computation of $Φ$-Equilibria at the Frontier of Tractability
- Authors: Brian Hu Zhang, Ioannis Anagnostides, Emanuel Tewolde, Ratip Emin Berker, Gabriele Farina, Vincent Conitzer, Tuomas Sandholm,
- Abstract summary: $Phi$-equilibria is a powerful and flexible framework at the heart of online learning and game theory.<n>We show that an efficient online algorithm incurs average $Phi$-regret at most $epsilon$ using $textpoly(d, k)/epsilon2$ rounds.<n>We also show nearly matching lower bounds in the online setting, thereby obtaining for the first time a family of deviations that captures the learnability of $Phi$-regret.
- Score: 85.07238533644636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: $\Phi$-equilibria -- and the associated notion of $\Phi$-regret -- are a powerful and flexible framework at the heart of online learning and game theory, whereby enriching the set of deviations $\Phi$ begets stronger notions of rationality. Recently, Daskalakis, Farina, Fishelson, Pipis, and Schneider (STOC '24) -- abbreviated as DFFPS -- settled the existence of efficient algorithms when $\Phi$ contains only linear maps under a general, $d$-dimensional convex constraint set $\mathcal{X}$. In this paper, we significantly extend their work by resolving the case where $\Phi$ is $k$-dimensional; degree-$\ell$ polynomials constitute a canonical such example with $k = d^{O(\ell)}$. In particular, positing only oracle access to $\mathcal{X}$, we obtain two main positive results: i) a $\text{poly}(n, d, k, \text{log}(1/\epsilon))$-time algorithm for computing $\epsilon$-approximate $\Phi$-equilibria in $n$-player multilinear games, and ii) an efficient online algorithm that incurs average $\Phi$-regret at most $\epsilon$ using $\text{poly}(d, k)/\epsilon^2$ rounds. We also show nearly matching lower bounds in the online learning setting, thereby obtaining for the first time a family of deviations that captures the learnability of $\Phi$-regret. From a technical standpoint, we extend the framework of DFFPS from linear maps to the more challenging case of maps with polynomial dimension. At the heart of our approach is a polynomial-time algorithm for computing an expected fixed point of any $\phi : \mathcal{X} \to \mathcal{X}$ based on the ellipsoid against hope (EAH) algorithm of Papadimitriou and Roughgarden (JACM '08). In particular, our algorithm for computing $\Phi$-equilibria is based on executing EAH in a nested fashion -- each step of EAH itself being implemented by invoking a separate call to EAH.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Sample-Efficient Linear Regression with Self-Selection Bias [7.605563562103568]
We consider the problem of linear regression with self-selection bias in the unknown-index setting.
We provide a novel and near optimally sample-efficient (in terms of $k$) algorithm to recover $mathbfw_1,ldots,mathbfw_kin.
Our algorithm succeeds under significantly relaxed noise assumptions, and therefore also succeeds in the related setting of max-linear regression.
arXiv Detail & Related papers (2024-02-22T02:20:24Z) - A quasi-polynomial time algorithm for Multi-Dimensional Scaling via LP hierarchies [34.7582575446942]
Multi-dimensional Scaling (MDS) is a family of methods for embedding an $n$-point metric into low-dimensional Euclidean space.
We give the first approximation algorithm for MDS with quasi-polynomial dependency on $Delta$.
arXiv Detail & Related papers (2023-11-29T17:42:05Z) - A Whole New Ball Game: A Primal Accelerated Method for Matrix Games and
Minimizing the Maximum of Smooth Functions [44.655316553524855]
We design algorithms for minimizing $max_iin[n] f_i(x) over a $d$-dimensional Euclidean or simplex domain.
When each $f_i$ is $1$-Lipschitz and $1$-smooth, our method computes an $epsilon-approximate solution.
arXiv Detail & Related papers (2023-11-17T22:07:18Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Memory-Constrained Algorithms for Convex Optimization via Recursive
Cutting-Planes [23.94542304111204]
First class of algorithms that provides a positive trade-off between gradient descent and cutting-plane methods in any regime with $epsilonleq 1/sqrt d$.
In the regime $epsilon leq d-Omega(d)$, our algorithm with $p=d$ achieves the information-theoretic optimal memory usage and improves the oracle-complexity of gradient descent.
arXiv Detail & Related papers (2023-06-16T17:00:51Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
In this paper, we establish an efficient online sub-sampling framework that measures the information gain of data points collected by an RL algorithm.
For a value-based method with complexity-bounded function class, we show that the policy only needs to be updated for $proptooperatornamepolylog(K)$ times.
In contrast to existing approaches that update the policy for at least $Omega(K)$ times, our approach drastically reduces the number of optimization calls in solving for a policy.
arXiv Detail & Related papers (2021-06-14T07:36:25Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Near-Optimal Reinforcement Learning with Self-Play [50.29853537456737]
We focus on self-play algorithms which learn the optimal policy by playing against itself without any direct supervision.
We propose an optimistic variant of the emphNash Q-learning algorithm with sample complexity $tildemathcalO(SAB)$, and a new emphNash V-learning algorithm with sample complexity $tildemathcalO(S(A+B))$.
arXiv Detail & Related papers (2020-06-22T05:00:13Z) - An Improved Cutting Plane Method for Convex Optimization, Convex-Concave
Games and its Applications [28.54236118020831]
We propose a new cutting plane algorithm that uses an optimal $O(n log (kappa))$ evaluations of the oracle.
We also provide evidence that the $n2$ time per evaluation cannot be improved and thus our running time is optimal.
arXiv Detail & Related papers (2020-04-08T20:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.