CoLA: Exploiting Compositional Structure for Automatic and Efficient
Numerical Linear Algebra
- URL: http://arxiv.org/abs/2309.03060v2
- Date: Wed, 29 Nov 2023 16:17:26 GMT
- Title: CoLA: Exploiting Compositional Structure for Automatic and Efficient
Numerical Linear Algebra
- Authors: Andres Potapczynski, Marc Finzi, Geoff Pleiss, Andrew Gordon Wilson
- Abstract summary: We propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA.
By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms.
We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.
- Score: 62.37017125812101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many areas of machine learning and science involve large linear algebra
problems, such as eigendecompositions, solving linear systems, computing matrix
exponentials, and trace estimation. The matrices involved often have Kronecker,
convolutional, block diagonal, sum, or product structure. In this paper, we
propose a simple but general framework for large-scale linear algebra problems
in machine learning, named CoLA (Compositional Linear Algebra). By combining a
linear operator abstraction with compositional dispatch rules, CoLA
automatically constructs memory and runtime efficient numerical algorithms.
Moreover, CoLA provides memory efficient automatic differentiation, low
precision computation, and GPU acceleration in both JAX and PyTorch, while also
accommodating new objects, operations, and rules in downstream packages via
multiple dispatch. CoLA can accelerate many algebraic operations, while making
it easy to prototype matrix structures and algorithms, providing an appealing
drop-in tool for virtually any computational effort that requires linear
algebra. We showcase its efficacy across a broad range of applications,
including partial differential equations, Gaussian processes, equivariant model
construction, and unsupervised learning.
Related papers
- Learning Linear Attention in Polynomial Time [115.68795790532289]
We provide the first results on learnability of single-layer Transformers with linear attention.
We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS.
We show how to efficiently identify training datasets for which every empirical riskr is equivalent to the linear Transformer.
arXiv Detail & Related papers (2024-10-14T02:41:01Z) - Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning [49.0767291348921]
Randomized Numerical Linear Algebra (RandNLA) is an area which uses randomness to develop improved algorithms for ubiquitous matrix problems.
This article provides a self-contained overview of RandNLA, in light of these developments.
arXiv Detail & Related papers (2024-06-17T02:30:55Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Benchmarking the Linear Algebra Awareness of TensorFlow and PyTorch [1.1470070927586016]
We develop benchmarks to investigate the linear algebra optimization capabilities of TF and PyT.
In this work, we focus on linear algebra computations in TF and PyT.
arXiv Detail & Related papers (2022-02-20T18:51:00Z) - Block-encoding dense and full-rank kernels using hierarchical matrices:
applications in quantum numerical linear algebra [6.338178373376447]
We propose a block-encoding scheme of the hierarchical matrix structure on a quantum computer.
Our method can improve the runtime of solving quantum linear systems of dimension $N$ to $O(kappa operatornamepolylog(fracNvarepsilon))$.
arXiv Detail & Related papers (2022-01-27T05:24:02Z) - Efficient GPU implementation of randomized SVD and its applications [17.71779625877989]
Matrix decompositions are ubiquitous in machine learning, including applications in dimensionality data compression and deep learning algorithms.
Typical solutions for matrix decompositions have complexity which significantly increases their computational cost and time.
We leverage efficient processing operations that can be run in parallel on modern Graphical Processing Units (GPUs) to reduce the computational burden of computing matrix decompositions.
arXiv Detail & Related papers (2021-10-05T07:42:41Z) - Tensor Relational Algebra for Machine Learning System Design [7.764107702934616]
We present an alternative implementation abstraction called the relational tensor algebra (TRA)
TRA is a set-based algebra based on the relational algebra.
Our empirical study shows that the optimized TRA-based back-end can significantly outperform alternatives for running ML in distributed clusters.
arXiv Detail & Related papers (2020-09-01T15:51:24Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Sketching Transformed Matrices with Applications to Natural Language
Processing [76.6222695417524]
We propose a space-efficient sketching algorithm for computing the product of a given small matrix with the transformed matrix.
We show that our approach obtains small error and is efficient in both space and time.
arXiv Detail & Related papers (2020-02-23T03:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.