Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning
- URL: http://arxiv.org/abs/2406.11151v2
- Date: Wed, 19 Jun 2024 02:43:48 GMT
- Title: Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning
- Authors: Michał Dereziński, Michael W. Mahoney,
- Abstract summary: Randomized Numerical Linear Algebra (RandNLA) is an area which uses randomness to develop improved algorithms for ubiquitous matrix problems.
This article provides a self-contained overview of RandNLA, in light of these developments.
- Score: 49.0767291348921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large matrices arise in many machine learning and data analysis applications, including as representations of datasets, graphs, model weights, and first and second-order derivatives. Randomized Numerical Linear Algebra (RandNLA) is an area which uses randomness to develop improved algorithms for ubiquitous matrix problems. The area has reached a certain level of maturity; but recent hardware trends, efforts to incorporate RandNLA algorithms into core numerical libraries, and advances in machine learning, statistics, and random matrix theory, have lead to new theoretical and practical challenges. This article provides a self-contained overview of RandNLA, in light of these developments.
Related papers
- CoLA: Exploiting Compositional Structure for Automatic and Efficient
Numerical Linear Algebra [62.37017125812101]
We propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA.
By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms.
We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.
arXiv Detail & Related papers (2023-09-06T14:59:38Z) - Generalization Bounds for Data-Driven Numerical Linear Algebra [24.961270871124217]
Data-driven algorithms can adapt their internal structure or parameters to inputs from unknown application-specific distributions, by learning from a training sample of inputs.
Several recent works have applied this approach to problems in numerical linear algebra, obtaining significant empirical gains in performance.
In this work we prove generalization bounds for those algorithms, within the PAC-learning framework for data-driven algorithm selection proposed by Gupta and Roughgarden.
arXiv Detail & Related papers (2022-06-16T02:23:45Z) - Matrix Decomposition and Applications [8.034728173797953]
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition.
matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network.
arXiv Detail & Related papers (2022-01-01T08:13:48Z) - Photonic co-processors in HPC: using LightOn OPUs for Randomized
Numerical Linear Algebra [53.13961454500934]
We show that the randomization step for dimensionality reduction may itself become the computational bottleneck on traditional hardware.
We show that randomization can be significantly accelerated, at negligible precision loss, in a wide range of important RandNLA algorithms.
arXiv Detail & Related papers (2021-04-29T15:48:52Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Determinantal Point Processes in Randomized Numerical Linear Algebra [80.27102478796613]
Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc.
Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms.
arXiv Detail & Related papers (2020-05-07T00:39:52Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.