論文の概要: Disarming Steganography Attacks Inside Neural Network Models
- arxiv url: http://arxiv.org/abs/2309.03071v2
- Date: Tue, 26 Sep 2023 20:04:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 23:09:29.244587
- Title: Disarming Steganography Attacks Inside Neural Network Models
- Title(参考訳): ニューラルネットワークモデル内での攻撃を解除するステガノグラフィー
- Authors: Ran Dubin,
- Abstract要約: 本稿では,AIモデル攻撃の解除と再構築に基づくゼロトラスト防止戦略を提案する。
本研究では,Qint8法とK-LRBP法に基づくモデル精度の低下を最小限に抑えながら,100%の防止率を示す。
- 参考スコア(独自算出の注目度): 4.750077838548593
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Similar to the revolution of open source code sharing, Artificial Intelligence (AI) model sharing is gaining increased popularity. However, the fast adaptation in the industry, lack of awareness, and ability to exploit the models make them significant attack vectors. By embedding malware in neurons, the malware can be delivered covertly, with minor or no impact on the neural network's performance. The covert attack will use the Least Significant Bits (LSB) weight attack since LSB has a minimal effect on the model accuracy, and as a result, the user will not notice it. Since there are endless ways to hide the attacks, we focus on a zero-trust prevention strategy based on AI model attack disarm and reconstruction. We proposed three types of model steganography weight disarm defense mechanisms. The first two are based on random bit substitution noise, and the other on model weight quantization. We demonstrate a 100\% prevention rate while the methods introduce a minimal decrease in model accuracy based on Qint8 and K-LRBP methods, which is an essential factor for improving AI security.
- Abstract(参考訳): オープンソースコード共有の革命と同様、人工知能(AI)モデル共有も人気が高まっている。
しかし、業界における急速な適応、認識の欠如、モデルを利用する能力の欠如により、攻撃ベクトルは著しく向上する。
マルウェアをニューロンに埋め込むことで、ニューラルネットワークのパフォーマンスに小さな、あるいはまったく影響を与えずに、マルウェアを秘密裏に配信することができる。
LSBはモデル精度に最小限の影響しか与えないため、隠蔽攻撃はLSB重み攻撃(Last Significant Bits)を使用する。
攻撃を隠すには無限の方法があるので、AIモデル攻撃の武装解除と再構築に基づくゼロトラスト防止戦略に注力する。
本研究は,3種類のモデルステガノグラフィー・デザーム防御機構について提案した。
最初の2つはランダムビット置換ノイズに基づいており、もう1つはモデルウェイト量子化に基づいている。
本稿では,Qint8法とK-LRBP法に基づくモデル精度の低下を最小限に抑えるとともに,AIのセキュリティ向上に欠かせない要因である100\%の防止率を示す。
関連論文リスト
- Steganalysis of AI Models LSB Attacks [4.0208298639821525]
悪意ある攻撃者は、共有AIモデルを利用してサイバー攻撃を開始することができる。
この研究は、AIモデルに注入された悪意のあるLast Significant Bit(LSB)ステガノグラフィーのステガナリシスに焦点を当てている。
本研究では,LSB steganography 攻撃の検出・軽減に適したステガナリシス法を提案する。
論文 参考訳(メタデータ) (2023-10-03T11:25:18Z) - Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models [1.2499537119440245]
モノのインターネット(IoT)における32ビットマイクロコントローラの組み込みディープニューラルネットワークモデルに焦点をあてる。
攻撃を成功させるためのブラックボックス手法を提案する。
古典的畳み込みニューラルネットワークでは、1500個の入力で最も重要なビットの少なくとも90%を回復することに成功した。
論文 参考訳(メタデータ) (2023-08-31T13:09:33Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
メモリフォールトインジェクション技術を利用したビットフリップ攻撃(BFA)と呼ばれる新たな重み修正攻撃が提案された。
本稿では,高リスクモデルを構築するための訓練段階に敵が関与する,訓練支援ビットフリップ攻撃を提案する。
論文 参考訳(メタデータ) (2023-08-12T09:34:43Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
既存のモデル盗難防衛は、被害者の後部確率に偽りの摂動を加え、攻撃者を誤解させる。
本稿では,モデルステルス防衛のための新規かつ効果的なトレーニングフレームワークである分離誘導(InI)を提案する。
モデルの精度を損なうモデル予測に摂動を加えるのとは対照的に、我々はモデルを訓練して、盗むクエリに対して非形式的なアウトプットを生成する。
論文 参考訳(メタデータ) (2023-08-02T05:54:01Z) - Publishing Efficient On-device Models Increases Adversarial
Vulnerability [58.6975494957865]
本稿では,大規模モデルのオンデバイス版を公開する際のセキュリティ上の考慮事項について検討する。
まず、敵がデバイス上のモデルを悪用し、大きなモデルを攻撃しやすくすることを示す。
次に、フルスケールと効率的なモデルとの類似性が増加するにつれて、脆弱性が増加することを示す。
論文 参考訳(メタデータ) (2022-12-28T05:05:58Z) - Adversarial Robustness Assessment of NeuroEvolution Approaches [1.237556184089774]
CIFAR-10画像分類タスクにおける2つのNeuroEvolutionアプローチにより得られたモデルのロバスト性を評価する。
以上の結果から,進化したモデルが反復的手法で攻撃されると,その精度は通常0に低下するか0に近づきます。
これらの技法のいくつかは、元の入力に付加された摂動を悪化させ、頑丈さを損なう可能性がある。
論文 参考訳(メタデータ) (2022-07-12T10:40:19Z) - Imperceptible Backdoor Attack: From Input Space to Feature
Representation [24.82632240825927]
バックドア攻撃はディープニューラルネットワーク(DNN)への脅威が急速に高まっている
本稿では,既存の攻撃手法の欠点を分析し,新たな非受容的バックドア攻撃を提案する。
我々のトリガーは、良性画像の1%以下のピクセルしか変更せず、大きさは1。
論文 参考訳(メタデータ) (2022-05-06T13:02:26Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
安全クリティカルな監視システムの重要性から、群衆のカウントは多くの注目を集めています。
近年の研究では、ディープニューラルネットワーク(DNN)の手法が敵の攻撃に弱いことが示されている。
群衆カウントモデルのロバスト性を評価するために,Momentumを用いた攻撃戦略としてAdversarial Patch Attackを提案する。
論文 参考訳(メタデータ) (2021-04-22T05:10:55Z) - Practical No-box Adversarial Attacks against DNNs [31.808770437120536]
我々は、攻撃者がモデル情報やトレーニングセットにアクセスしたり、モデルに問い合わせたりできない、ノンボックスの逆例を調査する。
非常に小さなデータセットでトレーニングを行うための3つのメカニズムを提案し、プロトタイプの再構築が最も効果的であることを示す。
提案手法は, システムの平均予測精度を15.40%に低下させ, 事前学習したArcfaceモデルから, 敵のサンプルを転送する攻撃と同等にする。
論文 参考訳(メタデータ) (2020-12-04T11:10:03Z) - Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization [67.62847721118142]
モデルが正しい脆弱性信号を捕捉して予測する能力を評価する。
SAR(Signal-Aware Recall)と呼ばれる新しい指標を用いて,モデルの信号認識を計測する。
その結果,90年代以降のリコールから60年代以降のリコールは,新たな指標で大幅に減少した。
論文 参考訳(メタデータ) (2020-11-25T20:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。