論文の概要: MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary
Polyp Segmentation
- arxiv url: http://arxiv.org/abs/2309.03329v2
- Date: Sun, 29 Oct 2023 18:28:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 20:11:04.011921
- Title: MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary
Polyp Segmentation
- Title(参考訳): MEGANet: 弱境界ポリプセグメンテーションのためのマルチスケールエッジガイドアテンションネットワーク
- Authors: Nhat-Tan Bui and Dinh-Hieu Hoang and Quang-Thuc Nguyen and Minh-Triet
Tran and Ngan Le
- Abstract要約: 医療における効率的なポリープセグメンテーションは、早期に大腸癌を診断する上で重要な役割を担っている。
大腸内視鏡画像中のポリプセグメンテーションに適したマルチスケールエッジガイド注意ネットワーク(MEGANet)を提案する。
MEGANetは、注目機構を備えた古典的なエッジ検出技術の融合からインスピレーションを得ている。
エンド・ツー・エンドのフレームワークとして設計されており、入力画像から特徴をキャプチャして抽象化するエンコーダ、有能な特徴にフォーカスするデコーダ、ラプラシアン演算子をアクセントに使用するエッジガイドアテンション・モジュール(EGA)の3つの主要なモジュールを含んでいる。
- 参考スコア(独自算出の注目度): 11.190960453535542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient polyp segmentation in healthcare plays a critical role in enabling
early diagnosis of colorectal cancer. However, the segmentation of polyps
presents numerous challenges, including the intricate distribution of
backgrounds, variations in polyp sizes and shapes, and indistinct boundaries.
Defining the boundary between the foreground (i.e. polyp itself) and the
background (surrounding tissue) is difficult. To mitigate these challenges, we
propose Multi-Scale Edge-Guided Attention Network (MEGANet) tailored
specifically for polyp segmentation within colonoscopy images. This network
draws inspiration from the fusion of a classical edge detection technique with
an attention mechanism. By combining these techniques, MEGANet effectively
preserves high-frequency information, notably edges and boundaries, which tend
to erode as neural networks deepen. MEGANet is designed as an end-to-end
framework, encompassing three key modules: an encoder, which is responsible for
capturing and abstracting the features from the input image, a decoder, which
focuses on salient features, and the Edge-Guided Attention module (EGA) that
employs the Laplacian Operator to accentuate polyp boundaries. Extensive
experiments, both qualitative and quantitative, on five benchmark datasets,
demonstrate that our EGANet outperforms other existing SOTA methods under six
evaluation metrics. Our code is available at
\url{https://github.com/UARK-AICV/MEGANet}.
- Abstract(参考訳): 大腸癌の早期診断には,効率的なポリープ分画が重要な役割を担っている。
しかし、ポリプのセグメンテーションには、背景の複雑な分布、ポリプのサイズや形状の変化、不連続の境界など、多くの課題がある。
前景(すなわちポリープ自体)と背景(輪郭組織)の境界を定義することは困難である。
これらの課題を軽減するために,大腸内視鏡画像内のポリプセグメンテーションに適したマルチスケールエッジガイド注意ネットワーク(MEGANet)を提案する。
このネットワークは、注目機構を備えた古典的エッジ検出技術の融合からインスピレーションを得ている。
これらの技術を組み合わせることで、MEGANetは、特にエッジとバウンダリの高周波情報を効果的に保存する。
MEGANetはエンドツーエンドのフレームワークとして設計されており、入力画像から機能をキャプチャして抽象化するエンコーダ、有能な機能に焦点を当てるデコーダ、ポリプバウンダリをアクセントするLaplacian Operatorを使用するEdge-Guided Attention Module(EGA)の3つの主要なモジュールを含んでいる。
5つのベンチマークデータセットに対する定性的かつ定量的な大規模な実験は、私たちのEGANetが6つの評価基準の下で既存のSOTAメソッドよりも優れていることを示した。
私たちのコードは \url{https://github.com/UARK-AICV/MEGANet} で利用可能です。
関連論文リスト
- MSA$^2$Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation [8.404273502720136]
MSA$2$Netは、スキップ接続を適切に設計した新しいディープセグメンテーションフレームワークである。
本稿では,空間的特徴を選択的に強調するために,MASAG(Multi-Scale Adaptive Space Attention Gate)を提案する。
MSA$2$Netは、最先端のSOTA(State-of-the-art)よりも優れています。
論文 参考訳(メタデータ) (2024-07-31T14:41:10Z) - EPPS: Advanced Polyp Segmentation via Edge Information Injection and Selective Feature Decoupling [5.453850739960517]
We propose a novel model named Edge-Prioritized Polyp (EPPS)。
具体的には,ポリプのエッジを正確に抽出することを目的としたエッジマッピングエンジン(EME)を組み込んだ。
また,Selective Feature Decoupler (SFD) と呼ばれるコンポーネントを導入し,モデルに対するノイズや外的特徴の影響を抑える。
論文 参考訳(メタデータ) (2024-05-20T07:41:04Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [40.3881565207086]
本研究では,ポリプセグメンテーションのためのエッジ対応特徴集約ネットワーク(EFA-Net)を提案する。
EFA-Netは、ポリプセグメンテーションの性能を高めるために、クロスレベルとマルチスケールの機能を完全に活用することができる。
広く採用されている5つの大腸内視鏡データセットの実験結果から,我々のEFA-Netは,一般化と有効性の観点から,最先端のポリプセグメンテーション法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-19T11:09:38Z) - SegT: A Novel Separated Edge-guidance Transformer Network for Polyp
Segmentation [10.144870911523622]
本稿では, 効率的なポリープ分割モデルを構築することを目的とした, エッジ誘導変換器 (SegT) ネットワークを提案する。
既存のCNNベースのアプローチよりも堅牢な表現を学習するトランスフォーマーエンコーダが特に適用された。
SegTの有効性を評価するために、5つの挑戦的な公開データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-06-19T08:32:05Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
ポリープセグメンテーションのための障害対応動的ネットワーク(LDNet)を提案する。
従来のU字型エンコーダ・デコーダ構造であり、動的カーネル生成と更新スキームが組み込まれている。
この単純だが効果的なスキームは、我々のモデルに強力なセグメンテーション性能と一般化能力を与える。
論文 参考訳(メタデータ) (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Netは、CT画像から自動的に新型コロナウイルスの肺感染症を分離するための新しいネットワークである。
BCS-Netはエンコーダ-デコーダアーキテクチャに従っており、多くの設計はデコーダのステージに焦点を当てている。
BCSRブロックでは、アテンション誘導グローバルコンテキスト(AGGC)モジュールがデコーダの最も価値のあるエンコーダ機能を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-07-17T08:54:07Z) - Grasp-Oriented Fine-grained Cloth Segmentation without Real Supervision [66.56535902642085]
本稿では, 深度画像のみを用いて, 変形した衣服のきめ細かい領域検出の問題に取り組む。
最大で6つの意味領域を定義し, 首の縁, スリーブカフ, ヘム, 上と下をつかむ点を含む。
これらの部品のセグメント化とラベル付けを行うために,U-net ベースのネットワークを導入する。
合成データのみを用いてネットワークをトレーニングし、提案したDAが実データでトレーニングしたモデルと競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
臨床的には、正確なポリープセグメンテーションは大腸癌の早期発見に重要な情報を提供する。
既存のほとんどの手法はU字型構造に基づいており、デコーダで段階的に異なるレベルの特徴を融合させるために要素ワイド付加または結合を用いる。
大腸内視鏡画像からポリプを抽出するマルチスケールサブトラクションネットワーク(MSNet)を提案する。
論文 参考訳(メタデータ) (2021-08-11T07:54:07Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
医用画像のセグメンテーションは、さらなる臨床分析と疾患診断のための信頼性の高い基盤を提供することができる。
既存のCNNベースのほとんどの手法は、正確なオブジェクト境界のない不満足なセグメンテーションマスクを生成する。
本稿では,2次元医用画像分割のための境界認識コンテキストニューラルネットワーク(BA-Net)を定式化する。
論文 参考訳(メタデータ) (2020-05-03T02:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。