論文の概要: From Base to Conversational: Japanese Instruction Dataset and Tuning
Large Language Models
- arxiv url: http://arxiv.org/abs/2309.03412v1
- Date: Thu, 7 Sep 2023 00:14:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-08 14:37:50.545615
- Title: From Base to Conversational: Japanese Instruction Dataset and Tuning
Large Language Models
- Title(参考訳): base to conversational:日本語命令データセットと大規模言語モデルのチューニング
- Authors: Masahiro Suzuki, Masanori Hirano, Hiroki Sakaji
- Abstract要約: 既存のデータセットを拡張・フィルタリングすることで,日本語の命令データセットを構築する。
日本語と英語の両方の既存モデルでローランド適応(LoRA)チューニングを行う。
- 参考スコア(独自算出の注目度): 6.520584613661788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Instruction tuning is essential for large language models (LLMs) to become
interactive. While many instruction tuning datasets exist in English, there is
a noticeable lack in other languages. Also, their effectiveness has not been
well verified in non-English languages. We construct a Japanese instruction
dataset by expanding and filtering existing datasets and apply the dataset to a
Japanese pre-trained base model. We performed Low-Rank Adaptation (LoRA) tuning
on both Japanese and English existing models using our instruction dataset. We
evaluated these models from both quantitative and qualitative perspectives. As
a result, the effectiveness of Japanese instruction datasets is confirmed. The
results also indicate that even with relatively small LLMs, performances in
downstream tasks would be improved through instruction tuning. Our instruction
dataset, tuned models, and implementation are publicly available online.
- Abstract(参考訳): インストラクションチューニングは、大規模言語モデル(LLM)が対話的になるために不可欠である。
多くの命令チューニングデータセットが英語に存在しているが、他の言語には顕著に欠けている。
また、その効果は英語以外の言語ではよく確認されていない。
既存のデータセットを拡張・フィルタリングして日本語指導データセットを構築し,そのデータセットを日本語事前学習ベースモデルに適用する。
日本語と英語の既存モデルに対して,命令データセットを用いてローランド適応(LoRA)チューニングを行った。
定量的および定性的な観点からこれらのモデルを評価した。
その結果,日本語指導データセットの有効性が確認された。
また,LLMが比較的小さい場合でも,インストラクションチューニングによって下流タスクのパフォーマンスが向上することが示唆された。
我々の指導データセット、チューニングモデル、実装はオンラインで公開されている。
関連論文リスト
- Training Bilingual LMs with Data Constraints in the Targeted Language [20.262591969661447]
本研究では,データ制約対象言語における事前学習モデルの性能を向上させるために,高品質なデータを利用できる補助言語からデータを抽出する手法について検討する。
本研究では,データ豊富な補助言語におけるトレーニングとデータ間のパフォーマンスギャップを,対象言語のトレーニングと比較して定量化する。
以上の結果から,より強力な補助データセットは,モデルの変更や近接言語学習の目的を伴わずに,性能向上をもたらすことが示された。
論文 参考訳(メタデータ) (2024-11-20T02:27:40Z) - MLAN: Language-Based Instruction Tuning Improves Zero-Shot Generalization of Multimodal Large Language Models [79.0546136194314]
マルチモーダルな大規模言語モデルのゼロショットタスクの一般化を改善するために,新しい命令チューニング手法を提案する。
提案手法の有効性を,言語と視覚の両面にまたがる9つの未知のデータセットに対して評価した。
論文 参考訳(メタデータ) (2024-11-15T20:09:59Z) - Multi-dimensional data refining strategy for effective fine-tuning LLMs [2.67766280323297]
本稿では,ベトナム語の微調整モデルに適したクロールおよび精錬時に学んだ教訓について述べる。
本稿では、既存のデータセットを英語で活用し、生成AIツールの助けを借りて、カスタマイズされたデータクローリングスクリプトを開発する多次元戦略を提案する。
論文 参考訳(メタデータ) (2023-11-02T07:50:43Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Improving Domain-Specific Retrieval by NLI Fine-Tuning [64.79760042717822]
本稿では、自然言語推論(NLI)データの微調整の可能性を調べ、情報検索とランキングを改善する。
コントラスト損失とNLIデータを利用した教師あり手法により細調整された単言語文エンコーダと多言語文エンコーダを併用する。
この結果から,NLIの微調整によりタスクおよび言語間のモデルの性能が向上し,単言語モデルと多言語モデルが改良される可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-06T12:40:58Z) - Improving Polish to English Neural Machine Translation with Transfer
Learning: Effects of Data Volume and Language Similarity [2.4674086273775035]
機械翻訳作業におけるデータ量と類似言語の使用が伝達学習に与える影響について検討する。
OPUS-100データセットを用いてポーランド語と英語の翻訳タスクに対してmBARTモデルを微調整する。
実験の結果、関連する言語と大量のデータの組み合わせは、関連する言語や大量のデータだけで訓練されたモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-01T13:34:21Z) - llm-japanese-dataset v0: Construction of Japanese Chat Dataset for Large
Language Models and its Methodology [4.396516562723691]
本研究では,約840万レコードからなる大規模言語モデル(LLM)をチューニングするための日本語チャットデータセットを構築した。
その結果,このデータセットはLLMにとって有益である可能性が示唆された。
しかし、英語以外の言語でLLMを構築することの難しさも明らかにした。
論文 参考訳(メタデータ) (2023-05-22T04:59:33Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
ELEVATERは、事前訓練された言語拡張ビジュアルモデルの比較と評価を行う最初のベンチマークである。
20の画像分類データセットと35のオブジェクト検出データセットで構成され、それぞれが外部知識で拡張されている。
研究コミュニティ向けのツールキットと評価プラットフォームをリリースします。
論文 参考訳(メタデータ) (2022-04-19T10:23:42Z) - Multilingual Neural Semantic Parsing for Low-Resourced Languages [1.6244541005112747]
英語,イタリア語,日本語の新しい多言語意味解析データセットを提案する。
本研究では,事前学習したエンコーダを用いた多言語学習がTOPデータセットのベースラインを大幅に上回ることを示す。
英語データのみに基づいて訓練されたセマンティクスは、イタリア語の文に対して44.9%の精度でゼロショットのパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-06-07T09:53:02Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。