Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty
- URL: http://arxiv.org/abs/2309.03433v1
- Date: Thu, 7 Sep 2023 01:35:24 GMT
- Title: Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty
- Authors: Chen Ling, Xujiang Zhao, Xuchao Zhang, Yanchi Liu, Wei Cheng, Haoyu
Wang, Zhengzhang Chen, Takao Osaki, Katsushi Matsuda, Haifeng Chen, Liang
Zhao
- Abstract summary: Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
- Score: 52.72790059506241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open Information Extraction (OIE) task aims at extracting structured facts
from unstructured text, typically in the form of (subject, relation, object)
triples. Despite the potential of large language models (LLMs) like ChatGPT as
a general task solver, they lag behind state-of-the-art (supervised) methods in
OIE tasks due to two key issues. First, LLMs struggle to distinguish irrelevant
context from relevant relations and generate structured output due to the
restrictions on fine-tuning the model. Second, LLMs generates responses
autoregressively based on probability, which makes the predicted relations lack
confidence. In this paper, we assess the capabilities of LLMs in improving the
OIE task. Particularly, we propose various in-context learning strategies to
enhance LLM's instruction-following ability and a demonstration uncertainty
quantification module to enhance the confidence of the generated relations. Our
experiments on three OIE benchmark datasets show that our approach holds its
own against established supervised methods, both quantitatively and
qualitatively.
Related papers
- Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
This paper describes the DSBA submissions to the Prompting Large Language Models as Explainable Metrics shared task.
Traditional similarity-based metrics such as BLEU and ROUGE have shown to misalign with human evaluation and are ill-suited for open-ended generation tasks.
arXiv Detail & Related papers (2023-11-07T06:36:39Z) - Mastering the Task of Open Information Extraction with Large Language
Models and Consistent Reasoning Environment [52.592199835286394]
Open Information Extraction (OIE) aims to extract objective structured knowledge from natural texts.
Large language models (LLMs) have exhibited remarkable in-context learning capabilities.
arXiv Detail & Related papers (2023-10-16T17:11:42Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Knowledgeable In-Context Tuning: Exploring and Exploiting Factual Knowledge for In-Context Learning [37.22349652230841]
Large language models (LLMs) enable in-context learning (ICL) by conditioning on a few labeled training examples as a text-based prompt.
In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets.
We introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL.
arXiv Detail & Related papers (2023-09-26T09:06:39Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.