Mastering the Task of Open Information Extraction with Large Language
Models and Consistent Reasoning Environment
- URL: http://arxiv.org/abs/2310.10590v1
- Date: Mon, 16 Oct 2023 17:11:42 GMT
- Title: Mastering the Task of Open Information Extraction with Large Language
Models and Consistent Reasoning Environment
- Authors: Ji Qi, Kaixuan Ji, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Lei Hou,
Juanzi Li, Bin Xu
- Abstract summary: Open Information Extraction (OIE) aims to extract objective structured knowledge from natural texts.
Large language models (LLMs) have exhibited remarkable in-context learning capabilities.
- Score: 52.592199835286394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open Information Extraction (OIE) aims to extract objective structured
knowledge from natural texts, which has attracted growing attention to build
dedicated models with human experience. As the large language models (LLMs)
have exhibited remarkable in-context learning capabilities, a question arises
as to whether the task of OIE can be effectively tackled with this paradigm? In
this paper, we explore solving the OIE problem by constructing an appropriate
reasoning environment for LLMs. Specifically, we first propose a method to
effectively estimate the discrepancy of syntactic distribution between a LLM
and test samples, which can serve as correlation evidence for preparing
positive demonstrations. Upon the evidence, we introduce a simple yet effective
mechanism to establish the reasoning environment for LLMs on specific tasks.
Without bells and whistles, experimental results on the standard CaRB benchmark
demonstrate that our $6$-shot approach outperforms state-of-the-art supervised
method, achieving an $55.3$ $F_1$ score. Further experiments on TACRED and
ACE05 show that our method can naturally generalize to other information
extraction tasks, resulting in improvements of $5.7$ and $6.8$ $F_1$ scores,
respectively.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE) to enhance LLM agents in solving open-world interactive tasks.
WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge.
A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task.
arXiv Detail & Related papers (2024-04-11T03:31:54Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction [12.673710691468264]
We introduce the Heuristic-Driven Link-of- Analogy (HD-LoA) prompting to address the challenge of example selection.
Inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations.
Experiments show that our method outperforms existing prompting methods and few-shot supervised learning methods on document-level EAE datasets.
arXiv Detail & Related papers (2023-11-11T12:05:01Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.