論文の概要: Underwater Image Enhancement by Transformer-based Diffusion Model with
Non-uniform Sampling for Skip Strategy
- arxiv url: http://arxiv.org/abs/2309.03445v1
- Date: Thu, 7 Sep 2023 01:58:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-08 14:28:21.064180
- Title: Underwater Image Enhancement by Transformer-based Diffusion Model with
Non-uniform Sampling for Skip Strategy
- Title(参考訳): 非一様サンプリングを用いた変圧器拡散モデルによる水中画像の強調
- Authors: Yi Tang, Takafumi Iwaguchi, Hiroshi Kawasaki
- Abstract要約: 水中シーンにおける拡散モデルを用いた画像強調手法を提案する。
本手法は,条件付き拡散確率モデルに適応し,対応する拡張画像を生成する。
実験結果から,本手法は競争性能と高い効率を両立できることが示された。
- 参考スコア(独自算出の注目度): 2.056162650908794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present an approach to image enhancement with diffusion
model in underwater scenes. Our method adapts conditional denoising diffusion
probabilistic models to generate the corresponding enhanced images by using the
underwater images and the Gaussian noise as the inputs. Additionally, in order
to improve the efficiency of the reverse process in the diffusion model, we
adopt two different ways. We firstly propose a lightweight transformer-based
denoising network, which can effectively promote the time of network forward
per iteration. On the other hand, we introduce a skip sampling strategy to
reduce the number of iterations. Besides, based on the skip sampling strategy,
we propose two different non-uniform sampling methods for the sequence of the
time step, namely piecewise sampling and searching with the evolutionary
algorithm. Both of them are effective and can further improve performance by
using the same steps against the previous uniform sampling. In the end, we
conduct a relative evaluation of the widely used underwater enhancement
datasets between the recent state-of-the-art methods and the proposed approach.
The experimental results prove that our approach can achieve both competitive
performance and high efficiency. Our code is available at
\href{mailto:https://github.com/piggy2009/DM_underwater}{\color{blue}{https://github.com/piggy2009/DM\_underwater}}.
- Abstract(参考訳): 本稿では,水中シーンにおける拡散モデルを用いた画像強調手法を提案する。
提案手法は,水中画像とガウス雑音を入力として,条件付き拡散確率モデルを適用して対応する拡張画像を生成する。
さらに, 拡散モデルにおける逆過程の効率を向上させるために, 2つの異なる方法を採用する。
まず,提案する軽量トランスフォーメーションネットワークは,イテレーション毎のネットワーク転送時間を効果的に促進できる。
一方で,反復回数を減らすためのスキップサンプリング戦略も導入する。
さらに,スキップサンプリング戦略に基づき,時間ステップのシーケンスに対する2つの異なる非一様サンプリング手法,すなわち,進化的アルゴリズムを用いた分割サンプリングと探索を提案する。
どちらも有効であり、前の均一サンプリングに対して同じステップを使用することで、さらに性能を向上させることができる。
最後に,最近の最先端手法と提案手法とで,広く使用されている水中拡張データセットの相対評価を行った。
実験の結果,本手法は競争性能と高い効率を両立できることがわかった。
私たちのコードは \href{mailto:https://github.com/piggy2009/dm_underwater}{\color{blue}{https://github.com/piggy2009/dm\_underwater}} で利用可能です。
関連論文リスト
- Beta Sampling is All You Need: Efficient Image Generation Strategy for Diffusion Models using Stepwise Spectral Analysis [22.02829139522153]
拡散過程の画像スペクトル解析に基づく効率的な時間ステップサンプリング法を提案する。
従来の均一分布に基づく時間ステップサンプリングの代わりに,ベータ分布のようなサンプリング手法を導入する。
我々の仮説では、あるステップは画像の内容に大きな変化を示すが、他のステップは最小限に寄与する。
論文 参考訳(メタデータ) (2024-07-16T20:53:06Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
本研究では,画像復元のための新しい,効率的な拡散モデルを提案する。
提案手法は,推論中の後処理の高速化を回避し,関連する性能劣化を回避する。
提案手法は,3つの古典的IRタスクにおける現在の最先端手法よりも優れた,あるいは同等の性能を実現する。
論文 参考訳(メタデータ) (2024-03-12T05:06:07Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
観測誘導拡散確率モデル(OGDM)と呼ばれる新しい拡散に基づく画像生成法を提案する。
本手法は,観測プロセスの指導をマルコフ連鎖と統合することにより,トレーニング目標を再構築する。
本研究では,強力な拡散モデルベースライン上での多様な推論手法を用いたトレーニングアルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2023-10-06T06:29:06Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Accelerating Guided Diffusion Sampling with Splitting Numerical Methods [8.689906452450938]
近年の手法は, サンプリングプロセスに高次数値法を適用することにより, 無誘導サンプリングを高速化することができる。
本稿では,この問題の原因を考察し,演算子分割法に基づく解を提供する。
提案手法は,高次サンプリング手法を再利用し,250ステップのDDIMベースラインと同じ画質の画像を生成できる。
論文 参考訳(メタデータ) (2023-01-27T06:48:29Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Uncertainty Inspired Underwater Image Enhancement [45.05141499761876]
劣化した水中画像の強調分布を学習するための新しい確率的ネットワークを提案する。
拡張分布を学習することにより,参照マップラベリングで導入されたバイアスに対処できる。
実験結果から,本手法は可能な拡張予測のサンプリングを可能にすることが示された。
論文 参考訳(メタデータ) (2022-07-20T06:42:28Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。