Learning continuous-valued treatment effects through representation
balancing
- URL: http://arxiv.org/abs/2309.03731v1
- Date: Thu, 7 Sep 2023 14:17:44 GMT
- Title: Learning continuous-valued treatment effects through representation
balancing
- Authors: Christopher Bockel-Rickermann, Toon Vanderschueren, Jeroen Berrevoets,
Tim Verdonck, Wouter Verbeke
- Abstract summary: We propose CBRNet, a causal machine learning approach to estimate an individual dose response from observational data.
Our work is the first to apply representation balancing in a continuous-valued treatment setting.
- Score: 5.969714692616101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the effects of treatments with an associated dose on an instance's
outcome, the "dose response", is relevant in a variety of domains, from
healthcare to business, economics, and beyond. Such effects, also known as
continuous-valued treatment effects, are typically estimated from observational
data, which may be subject to dose selection bias. This means that the
allocation of doses depends on pre-treatment covariates. Previous studies have
shown that conventional machine learning approaches fail to learn accurate
individual estimates of dose responses under the presence of dose selection
bias. In this work, we propose CBRNet, a causal machine learning approach to
estimate an individual dose response from observational data. CBRNet adopts the
Neyman-Rubin potential outcome framework and extends the concept of balanced
representation learning for overcoming selection bias to continuous-valued
treatments. Our work is the first to apply representation balancing in a
continuous-valued treatment setting. We evaluate our method on a newly proposed
benchmark. Our experiments demonstrate CBRNet's ability to accurately learn
treatment effects under selection bias and competitive performance with respect
to other state-of-the-art methods.
Related papers
- Federated Causal Inference: Multi-Centric ATE Estimation beyond Meta-Analysis [12.896319628045967]
We study Federated Causal Inference, an approach to estimate treatment effects from decentralized data across centers.
We compare three classes of Average Treatment Effect (ATE) estimators derived from the Plug-in G-Formula.
arXiv Detail & Related papers (2024-10-22T10:19:17Z) - Precise Model Benchmarking with Only a Few Observations [6.092112060364272]
We propose an empirical Bayes (EB) estimator that balances direct and regression estimates for each subgroup separately.
EB consistently provides more precise estimates of the LLM performance compared to the direct and regression approaches.
arXiv Detail & Related papers (2024-10-07T17:26:31Z) - The Mismeasure of Man and Models: Evaluating Allocational Harms in Large Language Models [22.75594773147521]
We introduce Rank-Allocation-Based Bias Index (RABBI), a model-agnostic bias measure that assesses potential allocational harms arising from biases in large language models (LLMs)
Our results reveal that commonly-used bias metrics based on average performance gap and distribution distance fail to reliably capture group disparities in allocation outcomes.
Our work highlights the need to account for how models are used in contexts with limited resource constraints.
arXiv Detail & Related papers (2024-08-02T14:13:06Z) - Sources of Gain: Decomposing Performance in Conditional Average Dose Response Estimation [0.9332308328407303]
Estimating conditional average dose responses (CADR) is an important but challenging problem.
Our paper analyses this practice and shows that using popular benchmark datasets without further analysis is insufficient to judge model performance.
We propose a novel decomposition scheme that allows the evaluation of the impact of five distinct components contributing to CADR estimator performance.
arXiv Detail & Related papers (2024-06-12T13:39:32Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z) - C-MI-GAN : Estimation of Conditional Mutual Information using MinMax
formulation [20.57104064155529]
We study conditional mutual information (CMI) estimation by utilizing its formulation as a minmax optimization problem.
We find that our proposed estimator provides better estimates than the existing approaches on a variety of simulated data sets.
As an application of CMI estimation, we deploy our estimator for conditional independence (CI) testing on real data and obtain better results than state-of-the-art CI testers.
arXiv Detail & Related papers (2020-05-17T11:22:12Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
Estimating the likely outcome of alternatives from observational data is a challenging problem.
We show that algorithms that learn domain-invariant representations of inputs are often inappropriate.
We develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
arXiv Detail & Related papers (2020-01-14T12:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.