Using representation balancing to learn conditional-average dose responses from clustered data
- URL: http://arxiv.org/abs/2309.03731v2
- Date: Fri, 26 Jul 2024 13:33:14 GMT
- Title: Using representation balancing to learn conditional-average dose responses from clustered data
- Authors: Christopher Bockel-Rickermann, Toon Vanderschueren, Jeroen Berrevoets, Tim Verdonck, Wouter Verbeke,
- Abstract summary: Estimating a unit's responses to interventions with an associated dose is relevant in a variety of domains.
We show the impacts of clustered data on model performance and propose an estimator, CBRNet.
- Score: 5.633848204699653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating a unit's responses to interventions with an associated dose, the "conditional average dose response" (CADR), is relevant in a variety of domains, from healthcare to business, economics, and beyond. Such a response typically needs to be estimated from observational data, which introduces several challenges. That is why the machine learning (ML) community has proposed several tailored CADR estimators. Yet, the proposal of most of these methods requires strong assumptions on the distribution of data and the assignment of interventions, which go beyond the standard assumptions in causal inference. Whereas previous works have so far focused on smooth shifts in covariate distributions across doses, in this work, we will study estimating CADR from clustered data and where different doses are assigned to different segments of a population. On a novel benchmarking dataset, we show the impacts of clustered data on model performance and propose an estimator, CBRNet, that learns cluster-agnostic and hence dose-agnostic covariate representations through representation balancing for unbiased CADR inference. We run extensive experiments to illustrate the workings of our method and compare it with the state of the art in ML for CADR estimation.
Related papers
- Federated Causal Inference: Multi-Centric ATE Estimation beyond Meta-Analysis [12.896319628045967]
We study Federated Causal Inference, an approach to estimate treatment effects from decentralized data across centers.
We compare three classes of Average Treatment Effect (ATE) estimators derived from the Plug-in G-Formula.
arXiv Detail & Related papers (2024-10-22T10:19:17Z) - Precise Model Benchmarking with Only a Few Observations [6.092112060364272]
We propose an empirical Bayes (EB) estimator that balances direct and regression estimates for each subgroup separately.
EB consistently provides more precise estimates of the LLM performance compared to the direct and regression approaches.
arXiv Detail & Related papers (2024-10-07T17:26:31Z) - The Mismeasure of Man and Models: Evaluating Allocational Harms in Large Language Models [22.75594773147521]
We introduce Rank-Allocation-Based Bias Index (RABBI), a model-agnostic bias measure that assesses potential allocational harms arising from biases in large language models (LLMs)
Our results reveal that commonly-used bias metrics based on average performance gap and distribution distance fail to reliably capture group disparities in allocation outcomes.
Our work highlights the need to account for how models are used in contexts with limited resource constraints.
arXiv Detail & Related papers (2024-08-02T14:13:06Z) - Sources of Gain: Decomposing Performance in Conditional Average Dose Response Estimation [0.9332308328407303]
Estimating conditional average dose responses (CADR) is an important but challenging problem.
Our paper analyses this practice and shows that using popular benchmark datasets without further analysis is insufficient to judge model performance.
We propose a novel decomposition scheme that allows the evaluation of the impact of five distinct components contributing to CADR estimator performance.
arXiv Detail & Related papers (2024-06-12T13:39:32Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z) - C-MI-GAN : Estimation of Conditional Mutual Information using MinMax
formulation [20.57104064155529]
We study conditional mutual information (CMI) estimation by utilizing its formulation as a minmax optimization problem.
We find that our proposed estimator provides better estimates than the existing approaches on a variety of simulated data sets.
As an application of CMI estimation, we deploy our estimator for conditional independence (CI) testing on real data and obtain better results than state-of-the-art CI testers.
arXiv Detail & Related papers (2020-05-17T11:22:12Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
Estimating the likely outcome of alternatives from observational data is a challenging problem.
We show that algorithms that learn domain-invariant representations of inputs are often inappropriate.
We develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
arXiv Detail & Related papers (2020-01-14T12:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.