論文の概要: Adversarially Robust Learning with Optimal Transport Regularized Divergences
- arxiv url: http://arxiv.org/abs/2309.03791v2
- Date: Mon, 31 Mar 2025 17:34:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 14:13:40.615943
- Title: Adversarially Robust Learning with Optimal Transport Regularized Divergences
- Title(参考訳): 最適輸送正規化ダイバージェンスを用いた逆ロバスト学習
- Authors: Jeremiah Birrell, Reza Ebrahimi,
- Abstract要約: 本稿では,情報ばらつきと最適輸送(OT)コストの両立によって構築された,最適輸送規則分岐のクラスである$Dc$を紹介する。
特に、ディープラーニングモデルの対角的堅牢性を高めるための新しいアプローチとして、$ARMOR_D$法を提案する。
- 参考スコア(独自算出の注目度): 4.251030047034567
- License:
- Abstract: We introduce a new class of optimal-transport-regularized divergences, $D^c$, constructed via an infimal convolution between an information divergence, $D$, and an optimal-transport (OT) cost, $C$, and study their use in distributionally robust optimization (DRO). In particular, we propose the $ARMOR_D$ methods as novel approaches to enhancing the adversarial robustness of deep learning models. These DRO-based methods are defined by minimizing the maximum expected loss over a $D^c$-neighborhood of the empirical distribution of the training data. Viewed as a tool for constructing adversarial samples, our method allows samples to be both transported, according to the OT cost, and re-weighted, according to the information divergence; the addition of a principled and dynamical adversarial re-weighting on top of adversarial sample transport is a key innovation of $ARMOR_D$. $ARMOR_D$ can be viewed as a generalization of the best-performing loss functions and OT costs in the adversarial training literature; we demonstrate this flexibility by using $ARMOR_D$ to augment the UDR, TRADES, and MART methods and obtain improved performance on CIFAR-10 and CIFAR-100 image recognition. Specifically, augmenting with $ARMOR_D$ leads to 1.9\% and 2.1\% improvement against AutoAttack, a powerful ensemble of adversarial attacks, on CIFAR-10 and CIFAR-100 respectively. To foster reproducibility, we made the code accessible at https://github.com/star-ailab/ARMOR.
- Abstract(参考訳): そこで我々は,情報分散,$D$,および最適輸送(OT)コスト,$C$の中間的畳み込みによって構築された,最適輸送正規化分岐のクラスである$D^c$を導入し,分散ロバスト最適化(DRO)におけるそれらの利用について検討する。
特に、ディープラーニングモデルの対角的堅牢性を高めるための新しいアプローチとして、$ARMOR_D$法を提案する。
これらのDRO法は、トレーニングデータの経験的分布のD^c$近傍での最大損失を最小化することにより定義される。
本手法は, 対向サンプル構築ツールとして, OTコストに応じて試料を輸送可能であり, 情報ばらつきにより再重み付けが可能であり, 対向サンプル輸送上に動的に動的に再重み付けを施すことが, ARMOR_D$の鍵となるイノベーションである。
ARMOR_D$を用いてUDR,TRADES,MART法を拡張し,CIFAR-10およびCIFAR-100画像認識の性能向上を図った。
具体的には、$ARMOR_D$を使用すると、それぞれCIFAR-10とCIFAR-100に対する強力な攻撃であるAutoAttackに対する1.9\%と2.1\%の改善につながる。
再現性を高めるため、私たちはhttps://github.com/star-ailab/ARMOR.comでコードをアクセスできるようにした。
関連論文リスト
- Regret Minimization and Statistical Inference in Online Decision Making with High-dimensional Covariates [7.21848268647674]
我々は、決定のための$varepsilon$-greedybanditアルゴリズムと、疎帯域パラメータを推定するためのハードしきい値アルゴリズムを統合する。
マージン条件下では、我々の手法は、$O(T1/2)$ regret あるいは古典的な$O(T1/2)$-consistent推論のいずれかを達成する。
論文 参考訳(メタデータ) (2024-11-10T01:47:11Z) - Enhancing Adversarial Training via Reweighting Optimization Trajectory [72.75558017802788]
余分な正規化、敵の重み付け、より多くのデータによるトレーニングといった欠点に対処するいくつかのアプローチが提案されている。
本稿では, 時間内学習の最適化トラジェクトリを利用するtextbfWeighted Optimization Trajectories (WOT) を提案する。
以上の結果から,WOTは既存の対人訓練手法とシームレスに統合され,頑健なオーバーフィッティング問題を一貫して克服していることがわかった。
論文 参考訳(メタデータ) (2023-06-25T15:53:31Z) - WAT: Improve the Worst-class Robustness in Adversarial Training [11.872656386839436]
敵の訓練は敵の攻撃から守るための一般的な戦略である。
ディープニューラルネットワーク(DNN)は、敵の例に弱いことが示されている。
本稿では,最悪の対人訓練の新たな枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-08T12:54:19Z) - Robust Few-shot Learning Without Using any Adversarial Samples [19.34427461937382]
高度なメタラーニング技術を用いて、数発の問題をロバストネスの目的と組み合わせる試みがいくつかなされている。
逆のサンプルを一切必要としない単純で効果的な代替案を提案する。
ヒトの認知的意思決定プロセスにインスパイアされ、ベースクラスデータとそれに対応する低周波サンプルの高レベル特徴マッチングを強制する。
論文 参考訳(メタデータ) (2022-11-03T05:58:26Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Practical Evaluation of Adversarial Robustness via Adaptive Auto Attack [96.50202709922698]
実用的な評価手法は、便利な(パラメータフリー)、効率的な(イテレーションの少ない)、信頼性を持つべきである。
本稿では,パラメータフリーな適応オートアタック (A$3$) 評価手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T04:53:54Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Mean-Shifted Contrastive Loss for Anomaly Detection [34.97652735163338]
そこで本研究では,集中損失法とコントラスト損失法の両方の障害モードを克服できる新たな損失関数を提案する。
私たちの改善は、$textitMean-Shifted Contrastive Loss$に基づいて、新しい異常検出アプローチをもたらします。
提案手法は,ROC-AUC$9.5%を含む複数のベンチマークにおいて,最先端の異常検出性能を実現する。
論文 参考訳(メタデータ) (2021-06-07T17:58:03Z) - Toward Adversarial Robustness via Semi-supervised Robust Training [93.36310070269643]
アドリラルな例は、ディープニューラルネットワーク(DNN)に対する深刻な脅威であることが示されている。
R_stand$ と $R_rob$ の2つの異なるリスクを共同で最小化することで、新しい防御手法であるロバストトレーニング(RT)を提案する。
論文 参考訳(メタデータ) (2020-03-16T02:14:08Z) - Debiased Off-Policy Evaluation for Recommendation Systems [8.63711086812655]
A/Bテストは信頼できるが、時間と費用がかかり、失敗のリスクが伴う。
提案手法は,履歴データに対するアルゴリズムの性能を推定する手法である。
提案手法は,最先端手法よりも平均2乗誤差が小さい。
論文 参考訳(メタデータ) (2020-02-20T02:30:02Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。